

How does your Swiss cheese deform?

A walk-through demonstration

ElmerGUI Demo

- The material for this demo is on the USB stick
- If you have a working Elmer/ElmerGUI environment at hand, you can do the example at the same time, as we will go in a reasonably slow, yet steady pace
- BUT: we are not able to stop if you got seriously stuck
 - But, there is always time for short questions
- The example can be revisited (including our support) in the last hour of this tutorial

The Problem/Motivation

- A 20 x 20 x 40 cm block of cheese (assumed to be a linearly elastic material) is put under an external force
- Linear equations rather smooth solution→ increased mesh resolution only by geometry
- Testing on topologies with varying geometric complexity – number of voids may easily be altered

Work Flow

- Create a random distribution of spherical voids (=holes) in a brick as a Netgen geometry file using Octave/Matlab script
- Meshing geometry using Netgen
- Checking mesh using ElmerGrid/Post
- Set-up
 - Importing mesh into ElmerGUI
 - Defining the case/project
- Run
- Post-processing

- Creating the geometry:
 - Copy file holes.m into a new directory
 - Apply the changes (change from 100 to 10 holes)
 - Run octave holes.m
 - That should create a file named holes10.geo

```
Terminal
File Edit View Search Terminal Help
zwinger@zwinger-VM ~/Work/Elmer/Examples/CheeseSqueeze/RunDir1 $ ls
holes.m holes.m~
zwinger@zwinger-VM ~/Work/Elmer/Examples/CheeseSqueeze/RunDir1 $ octave
                                    octave-bug-3.2.4
                  octave-3.2.4
octave3.2
                  octave-bug
zwinger@zwinger-VM ~/Work/Elmer/Examples/CheeseSqueeze/RunDir1 $ octave holes.m
GNU Octave, version 3.2.4
Copyright (C) 2009 John W. Eaton and others.
This is free software; see the source code for copying conditions.
There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. For details, type `warranty'.
Octave was configured for "x86 64-pc-linux-gnu".
Additional information about Octave is available at http://www.octave.org.
Please contribute if you find this software useful.
For more information, visit http://www.octave.org/help-wanted.html
Report bugs to <bug@octave.org> (but first, please read
http://www.octave.org/bugs.html to learn how to write a helpful report).
```

- Creating the geometry:
 - Start netgen
 - Load holes10.geo
 - Click on Generate Mesh
 - Choose Elmer under Export Filetype
 - Export Mesh

- The mesh is stored in the files
 - mesh. {header, nodes, elements, boundary}
 - Copy them into a sub-directory holes10
- Create an ElmerPost output-file:
 - ElmerGrid 2 3 holes10
- Launch ElmerPost
 - and load holes10.ep
 - Open Edit → Grouping ... and check the different boundaries
 - Our relevant boundaries are 1-6 (the large sides)
 - Check the dimensions 4 x 4 x 2
 - Too large a piece of cheese, if meters

- Elmer does not assume any unit system
- Built-in material library parameters are in SI units
- User has to guarantee consistency between geometry and physical constants
- One possibility: Scale the mesh
 - unit length was 10 cm = 0.1 m
 ElmerGrid 2 2 holes10 -scale 0.1 0.1 0.1 -out
 holes10_scale
 - Now the mesh is in SI-units (meters) and the built-in material library (in SI units) could be used
- Here, we are using internal scaling provided by Elmer (see later in this tutorial)

- Launch ElmerGUI
- File → Load Mesh: holes10

- Launch ElmerGUI
- File → Load Mesh: holes10

- All following steps are sequentially ordered in the menu Model
- They reflect the different section in the solver input file that is created for the solver step

		-15		45
Model	View	Sif	Run	ŀ
Setu	p			
Equa	ation			Þ
Mate	erial			Þ
Body	force			Þ
Initia	al condi	tion		۰
Bour	ndary co	onditio	on	Þ
Set l	oody pr	operti	es	
Set l	oounda	ry pro	pertie	5
Sum	mary			
Clea	r all			

- Basic setup of the simulation
 - Header for mesh
 - Simulation
 - Constants
- Possibility to scale input mesh

- - definition of physical models (=Solvers) for the simulation
- Toggle Linear elasticity
 - Priority to 2
 - Edit SolverSettings

- Linear system
- Nonlinear system:
 - Reduce Max.Iterations to 1(linear problem!)

			near elasticity		
Solver specific option	ns General	Steady state	Nonlinear system	Linear system	F <
Method					
O Direct Ba	nded 🛊				
Iterative Bio	CGStab ♣				
O Multigrid Jac	obi 🛕				
Control					
Max. iterations	500				
Convergence tol.	1.0e-08				
Preconditioning	ILU1 Å				
ILUT tolerance	1.0e-3	100			
Residual output	1				
Prec. recompute	1				
Abort if the so	lution did not	converge			
				✓ A	pply

- Toggle Result
 Output
 - Priority to 1
 - Edit SolverSettings

- Linear system
- Solver specific options

- Linear system
- Solver specific options
- General:
 - Toggle after simulation
 - Why?: Results to be saved when converged

- definition of physical properties for the simulation
- Material Library
 - Polycarbonate (generic)

Model → Initial Condition

initialization of variable values for the simulation

Linear elasticity

All variables to zero

Model → Boundary Condition

- definition of variable values at boundaries for the simulation
- Usually multiple
- Different names
- Linear elasticity
 - Force boundary
 - Add + New

- Linear elasticity
 - Wall boundary
 - Add + New

- Linear elasticity
 - Wall Boundary
 - Add + OK

- In general it is difficult to know the boundary number in the mesh → assign manually
- Model → Set boundary properties
- Then double-klick on specific boundary (gets highlghted)

- Assigning force boundary
- Press +Add
- Rotate to lower boundary

- Assigning wall boundary
- Press +Add
- Toggle off
 Model →
 Set
 boundary
 properties

- Visualization of boundary ID in ElmerGUI:
 - View→
 Numbering
 → Boundary
 index

- Model →Boundary condition → Add...
- Linear elasticity
 - Zero stress
 - Toggle remaining boundaries with ID ≤ 6
 - Add + OK

- Finnishing the setup:
 - SIF → generate
 - Save the project:
 - Either by File →
 Save project
 - Or by the symbol in the task bar
 - Create new folder
 - Save the files:
 - Either by File →Save
 - Or by the symbol in the task bar

Run

Run the case:

- Either Run→start solver or
 - color 🥟
- The symbol then will change color s
- A log window will occur
- ... and display an error message:

```
ERROR:: Model Input: Unknown specifier: [0]
ERROR:: Model Input: In section: [initial condition 1]
ERROR:: Model Input: For property name: [displacement velocity 3]
```

- Problem: Displacement Velocity not in Keyword Database
- Re-open Initial Condition 1
- Cast the values with Real
- Update and OK
- SIF →generate and

Post-processing

- Two post processors:
 - Internal VTK based: Run → Postprocessor (VTK)
 - Externally linked ElmerPost (legacy postprocessor of Elmer):
 - Either Run → Start postprocessor or

Changes color if active

ElmerPost manipulations:

```
math on = nodes
math nodes = on + 100 * Displacement
```


Post-processing

Further steps

- Why is the cheese not squeezed, but pulled?
 - Mind, that surface normal (that defines the direction of normal force) by definition is pointing outwards.
- Task: change force to correct sign and rerun case
 - Remember to create the SIF and save it, before re-running