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Requirements of parallel scalability  

All steps in the workflow must be considered 

Preprocessing 

– Lack of parallel tools  

-> bottle-necks in {memory, time, I/O} 

– Some possible remedies 

Computation  

– Algorithmic scalability with the problem size  

(weak scaling) 

– Effective parallel implementation (strong scaling) 

Postprocessing 

– Excellent parallel tools 

– Some possible ways to reduce the data 

 

 



Analysis of serial workflow 

A simple Poisson problem was solved with one core  

Time consumed for each step was analyzed as a 

function of problem size N  

Observations were fitted to the model: T=aNb 

solution time (GMG) 

  > unstructured meshing time (gmsh) 

    > partitioning time (Metis) 

      > structured meshing time (ElmerGrid) 

Scalability of each step almost linear (b  1-1.1) 

 

   

 

  



CPU time for serial pre-processing and solution  



Scalability model 



Overcoming bottle-necks in preprocessing 

Meshing is often the most difficult bottle-neck 

– Serial tools used to create up to ~1-10 M nodes 

Options for larger problems 

– Parallel mesh generation 

– Finalizing the mesh in parallel level 

Mesh partitioning is almost always less laborious 

than meshing  

– Serial partititioning is seldom a problem 

– There are parallel versions of partitioning tools: 

ParMetis 

 



CPU time for structured pre-processing 



CPU time for unstructured pre-processing 



Parallel mesh generation 

Parallel mesh generation is still  

in its infancy 

No freely available established  

tools (?) 

Preliminary work for Elmer performed within PRACE in  

Bogazigi Univ., Istanbul 

– Y. Yılmaz, C. Özturan*, O. Tosun, A. H. Özer, S. Soner  

“Parallel Mesh Generation, Migration and Partitioning for the  

Elmer Application” 

– Based on netgen serial mesh generation 

– Generate coarse mesh -> partition -> mesh refinement 

– ”mesh with size 1.4 billion could be generated in under a minute” 

– Still experimental, writes mesh into disk for Elmer to read 

-> Introduces a possible I/O bottle-neck 

Ultimately parallel mesh generation should be integrated with an  

API rather than disk I/O 

 

 



Parallel mesh generation: performance 

Y. Yılmaz et. al. 

“Parallel Mesh Generation, Migration and  

Partitioning for the Elmer Application” 



Finalizing the mesh in parallel level 

First make a coarse mesh and partition it 

Division of existing elements (2^DIM^n -fold problem-

size) 

– Known as ”Mesh Multiplication” 

– In Simulation block set ”Mesh Levels = N” 

– There is a geometric multigrid that utilizes the mesh hierarchy  

– Simple inheritance of mesh grading 

Increase of element order (p-elements) 

– There is also a p-multigrid in Elmer 

Extrusion of 2D layer into 3D for special cases  

– Example: Greenland Ice-sheet 

For complex geometries this is often not an option 

– Optimal mesh grading difficult to maintain 

– Geometric accuracy cannot be increased  



Mesh Multiplication, example 

Mesh multiplication was applied to two meshes 

– Mesh A: structured, 62500 hexahedrons 

– Mesh B: unstructured, 65689 tetrahedrons 

The CPU time used is negligible 

Mesh #splits #elems #procs T_center 

(s) 

T_graded 

(s) 

A 2 4 M 12 0.469 0.769 

2 4 M 128 0.039 0.069 

3 32 M 128 0.310 0.549 

B 2 4.20 M 12 0.369 

2 4.20 M 128 0.019 

3 33.63 M 128 0.201 



Analysis of algorithmic scalability 

Scalability of algorithms may be studied also in 

serial simulation  

– Observations of relevant as long as the parallel 

algorithm has at best the same properties 

Experiments show that only multigrid methods 

provide almost linear scaling 

– Power 1..1.2 

– Krylov methods ~1.5 in 2D and ~1.4 in 3D  

 







CPU time for solution – one level vs. multilevel 



Parallellism in Elmer library 

Parallelization with MPI  

– Some initial work on hybrid methods i.e. Open MP + MPI 

Assembly  

– Each partition assemblies it’s own part, no communication  

Parallel Linear solvers included in Elmer 

– Iterative Krylov methods  

CG, BiCGstab, BiCGStabl, QCR, GMRes, TFQMR,… 

Require only matrix-vector product with parallel communication 

– Geometric Multigrid  

Utilizes mesh hierarchies created by mesh multiplication 

– Domain Decomposition: FETI 

– Preconditioners 

ILUn performed block-wise 

Diagonal and Vanka exactly the same in parallel 

Multigrid methods more robust as preconditioners 

 

 



Parallel external libraries for Elmer 

MUMPS 

– Direct solver that may work when averything else fails 

Hypre 

– Large selection of methods  

– Algebraic multigrid: Boomer MG  

– Parallel ILU preconditioning 

– Approximate inverse preconditioning: Parasails 

Interface to Trilinos 

– Implemented by Jonas Thies, Univ. of Uppsala 

 



Observations in parallel runs 

Typically good scale-up in parallel runs requires around 

1e4 dofs in each partition 

– Otherwise communication of shared node data will start to 

dominate 

– In 3D the number of shared nodes for each partition is 

~(N/P)^(2/3) giving rise to a speedup-up of ~1.58 at doubling of 

partitions even if communication dominates 

To take use of the local memory hierarchies the local 

problem should not be too big either 

– Sometimes superlinear speed-up is observed when the local 

linear problem fits to the cache memory 

Good scaling has been shown up to thousands of cores 

Simulation with over one billion unknowns has been 

performed 
 

 



Parallel performance 

Cavity lid case solved with the  

monolithic N-S solver 

Partitioning with Metis 

Solver Gmres with ILU0 

preconditioner 

Louhi: Cray XT4/XT5 with 2.3 GHz 4-core 

AMD Opteron. All-in-all 9424 cores and Peak 

power of 86.7 Tflops. 

 

 

Simulation Juha Ruokolainen 

CSC, visualization Matti Gröhn, CSC . 

 

 



Parallel computation, example 

Poisson equation with 100 M dofs  

Mesh created from coarse mesh using mesh 

multiplication 

Solution with geometric multigrid (GMG) utilizing the 

different mesh levels 

Very good speedup up to ~1000 partitions 

#procs T(P) / s T(P)/T(2P) 

272 279 - 

544 152 1.84 

1088 76 2.00 

2176 50 1.52 

Louhi: Cray XT4/XT5 with 2.3 GHz 4-core 

AMD Opteron. All-in-all 9424 cores and Peak 

power of 86.7 Tflops. 

 

 



Failure of standard methods, example 

Already linear elasticity equation may pose problems for parallel solution 

Case of linear elasticity with 500,000 unknowns 

Many standard methods fail to converge, or scale sub-optimally 

– Need for methods with better robustness & scalability  

Method  \ T (s) 1 2 4 16 32 

Umfpack 53533 

Pardiso 290 175 105 80 65 

Mumps 285 190 135 86 

BiCG+diag 1270 750 450 225 180 

BiCG+ILU(1) 1690 1450 X 580 X 

Hypre-BiCG+Parasails 505 295 145 110 

Hypre-BiCG+ILU(0) X X 506 X 

Note: Calculations performed on vuori.csc.fi cluster in 2010.  

The solvers may have improved in performance since 



FETI Implementation in Elmer 

Finite Element Tearing and Interconnect 

Domain decomposition method for solving linear 

equations resulting from FEM 

Robust parallel method for elliptic PDEs such as 

Poisson’s or Navier’s (linear elasticity) equation 

In each iteration requires solution of a primal problem in 

each partition, and a dual problem on the global level 

Number of iterations may be shown to be bounded 

 

Related PARA2012 presentation: 
V. Hapla et al.:  

Massively Parallel Implementation of TFETI DDM on  

PETSc and Trilinos 



FETI Parallel performance 

#procs Time / s #iters 

27 10.52 26 

64 12.30 29 

125 9.27 31 

216 9.96 31 

343 10.26 32 

512 11.18 32 

729 12.13 33 

1000 19.88 33 

3375 31.52 35 

Linear elasticity equation in 

a unit cube with constant  

loading from the side.  

 

The size of the case 

was kept fixed at 8000 

elements for each partition. 

 

The largest case includes 

thus around 80 Mdofs. 

 

Excellent weak scaling 

up to 729 cores 

 

Computations carried out 

on Curie (CAE) in 2011 



Example, Swiss cheese case with FETI  

Total FETI  

Umfpack as factorizer + ARPACK / Eigenvectors nullspace 

detection 

– Partititions not continuous 

Lagrange multipliers used as fixing local system 

#procs T_total/s T(N)/T(2N) T_factor/s #CPG_iter

s 

2 222.51 84.70 55 

4 84.62 2.63 15.27 60 

8 63.54 1.33 4.89 80 

16 22.76 2.79 1.30 100 

32 26.05(?) 0.87 1.19 100 

64 11.03 2.36 0.17 115 

128 4.03 2.73 0.09 100 



Example, Swiss cheese case with Hypre  

Solution with Hypre 

BiCGStab + Parallel ILU0 

For this small case outperforms FETI  

Strange variations; computing nodes weren’t reserved 

#procs T_tot T(N)/T(2N) 

2 16.31 

4 11.52 1.41 

8 6.86 1.67 

16 5.37 1.28 

32 5.16 1.04 

64 1.03 5.00 



Block preconditioning in Elmer 

In Parallel runs a central challenge is to have good  

parallel preconditioners 

This problem is increasingly difficult for PDEs with vector 

fields 

– Navier-Stokes, elasticity equation,... 

Idea: Use as preconditioner a procedure where the 

components are solved one-by-one (like in Gauss-Seidel) and 

the solution is used as a search direction in an outer Krylov 

method 

Number of outer iterations may be shown to be bounded 

Individual blocks may be solved with optimally scaling 

methods (AMG) 

Related PARA2012 Presentation: 
M. Malinen et al.  

”Parallel Block Preconditioning by Using the Solver of Elmer” 

 



Hybridization in Elmer 

Preliminary work on  

Open MP + MPI hybridization 

Open MP pragmas have been 

added for 

– Matrix assembly 

– Sparse matrix-vector multiplication 

The current implementation is 

efficient for  

– iterative Krylov methods with  

– diagonal or Vanka as preconditioner 

Scaling within one CPU is excellent 

Hybridization will become 

increasingly important when the 

number of cores increase 

 

#threds T(s) 

1 341 

2 130 

4 69 

8 47 

16 38 

32 27 

Table: Navier-Stokes equation solved with 

BiCGStabl(4) and Vanka preconditioning 

on a HP ProLiant DL580 G7 with quad-

core Intel Xeon processors. 



Sparse Matrix-Vector product 

In some cases up to 80% of time is used in sparse 

matrix-vector product 

Sparse matrix presentation (CRS) means indirect 

memory addressing which kills performance  

Could code efficiency be improved with improved matrix 

presentation? 

 

Related PARA2012 presentation:  
V. Karakasis, G. Goumas et al. 

“Using State-Of-The-Art Sparse Matrix Optimizations for  

Accelerating the Performance of Multiphysics Simulations” 



Matrix-vector product code in Elmer 

!------------------------------------------------------------------------------ 

!>    Matrix vector product (v = Au) for a matrix given in CRS format. 

!------------------------------------------------------------------------------ 

  SUBROUTINE CRS_MatrixVectorMultiply( A,u,v ) 

!------------------------------------------------------------------------------ 

    REAL(KIND=dp), DIMENSION(*), INTENT(IN) :: u   !< Vector to be multiplied 

    REAL(KIND=dp), DIMENSION(*), INTENT(OUT) :: v  !< Result vector 

    TYPE(Matrix_t), INTENT(IN) :: A                !< Structure holding matrix 

!------------------------------------------------------------------------------ 

     INTEGER, POINTER  CONTIG :: Cols(:),Rows(:) 

     REAL(KIND=dp), POINTER  CONTIG :: Values(:) 

 

     INTEGER :: i,j,n 

     REAL(KIND=dp) :: rsum 

!------------------------------------------------------------------------------ 

 

     n = A % NumberOfRows 

     Rows   => A % Rows 

     Cols   => A % Cols 

     Values => A % Values 

 

!$omp parallel do private(j,rsum) 

     DO i=1,n 

        rsum = 0.0d0 

        DO j=Rows(i),Rows(i+1)-1 

           rsum = rsum + u(Cols(j)) * Values(j) 

        END DO 

        v(i) = rsum 

     END DO 

!$omp end parallel do 

!------------------------------------------------------------------------------ 

  END SUBROUTINE CRS_MatrixVectorMultiply 

!------------------------------------------------------------------------------ 



Overcoming bottle-necks in postprocessing 

Visualization 

– Paraview and Visit excellent tools for parallel visualization 

– Still the sheer amount of data may be overwhelming and access to all 

data is often an overkill 

Reducing data 

– Saving only boundaries 

– Uniform point clouds 

– A priori defined isosurfaces 

– Using coarser meshes for output when hierarchy of meshes exist 

Extracting data 

– Dimensional reduction (3D -> 2D) 

– Averaging over time 

– Integrals over BCs & bodies 

More robust I/O 

– Not all cores should write to disk in massively parallel simulations 

– HDF5+XDML output available for Elmer, mixed experiences 

 

 



Memory consumption of files, example 

Memory consumption of vtu-files (for Paraview) was studied in 

the ”swiss cheese” case 

The ResultOutputSolver with different flags was used to write 

output in parallel 

Saving just boundaries in single precision binary format may 

save over 90% in files size compared to full data in ascii 

With larger problem sizes the benefits are amplified 

Binary output Single Prec. Only bound. Bytes/node 

- X - 376.0 

X - - 236.5 

X X - 184.5 

X - X 67.2 

X X X 38.5 



Relative importance of bottle-necks 

Serial runs 

– Solution is typically the bottle-neck 

– Algorithmic scalability not a major issue 

Small parallel runs (P~=10) 

– Balance between pre- prosessing  rather good 

– Algorithmic scalabity already a concern 

Large parallel runs (P~=100) 

– Preprocessing often a bottle-neck but just managable 

– Postprocessing may be heavy and requires consideration 

Massively parallel runs (P~>1000) 

– All phases require special attension 

– Preprocessing either cheap and simple, or complex and parallel 

– Postprocessing often requires parallel strategies 

– Extra care must be be put to the finest details  

Just taking an FE norm may introduce a bottle-neck 



Recipes for optimal scalability in Elmer 

Finalize mesh on a parallel level (no I/O) 

– Mesh multiplication or parallel mesh generation 

Use algorithms that scale well 

– I.e. Multigrid methods 

If the initial problem is difficult to solve effectively 

divide it into simpler sub-problems 

– One component at a time -> block preconditioners 

GCR + Block Gauss-Seidel + AMG + SGS 

– One domain at a time -> FETI  

– Splitting schemes (e.g. Pressure correction in CFD) 

Analyze results on-the-fly and reduce the amount of 

data for visualization 


