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A B S T R A C T

Recent years have witnessed the practical value of open-access Earth observation data catalogues and
software in land and forest mapping. Combined with cloud-based computing resources, and data collection
through the crowd, these solutions have substantially improved possibilities for monitoring changes in land
resources, especially in areas with difficult accessibility and data scarcity. In this study, we developed and
tested a participatory mapping methodology utilizing the open data catalogues and cloud computing ca-
pacity to map the previously unknown extent and species composition of forest plantations in the Southern
Highlands area of Tanzania, a region experiencing a rapid growth of smallholder-owned woodlots. A large
set of reference data, focusing on forest plantation coverage, species and age information distribution, was
collected in a two-week participatory GIS campaign where 22 Tanzanian experts interpreted very high-
resolution satellite images in Google Earth with the Open Foris Collect Earth tool developed by the Food
and Agriculture Organization of the United Nations. The collected samples were used as training data to
classify a multi-sensor image stack of Landsat 8 (2013–2015), Sentinel-2 (2015–2016), Sentinel-1 (2015),
and SRTM derived elevation and slope data layers into a 30 m resolution forest plantation map in Google
Earth Engine. The results show that the forest plantation area was estimated with high overall accuracy
(85%). The interpretation accuracy of local experts was high considering general definition of forest
plantation declining with increased details in interpretation attributes. The results showcase the unique
value of local expert participation, enabling the collection of thousands of reference samples over a large
geographical area in a short period of time simultaneously building the capacity of the experts. However,
sufficient training prior to the data collection is crucial for the interpretation success especially when
detailed interpretation is conducted in complex landscapes. Since the methodology is built on open-access
data and software, it presents a highly feasible solution for repetitive land resource mapping applicable at
different spatial scales globally.

1. Introduction

Recent years have witnessed the practical value of emerging open-
access Earth observation data catalogues and software in land and
forest mapping. Data repositories provided by commercial vendors and
public organizations, such as Google Earth and Global Land Cover
Facility have diversified the opportunities to make remote sensing
based observations at multiple spatial and temporal scales globally
(Wulder and Coops, 2014; Turner et al., 2015; Klein et al., 2017).
Combined with cloud-based computing resources, these solutions have
substantially improved possibilities for monitoring of environmental

and land resource development in a changing world (Hansen et al.,
2013; Dong et al., 2016; Xiong et al., 2017). The impacts have not only
been on the lessening of previously laborious satellite data downloading
and pre-processing phases of the work, but on the overall access to, and
enabling of combined uses of multiple data sources simultaneously in a
cloud-based environment. Access to open data repositories have en-
abled multi-sensor and multi-temporal image analysis essential to
overcome the shortcomings related to land and forest mapping in the
tropics such as spectral mixing between planted and natural forests,
heterogeneous spectral characteristics of different tree species, dynamic
land use patterns, and frequent cloud cover and moist conditions (Dong
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et al., 2013; le Maire et al., 2014; Fagan et al., 2015; Chen et al., 2016;
Torbick et al., 2016).

At the same time new solutions to collect evidence-based informa-
tion to support image processing have become widely accessible for the
larger public. Collecting volunteered geographical information (VGI)
based on, for example Google Earth images has been introduced for
validating global and regional mapping of land cover (Fritz et al., 2009;
Clark et al., 2010; Gessner et al., 2015; See et al., 2015a; See et al.,
2015b; Tsendbazar et al., 2015; Estes et al., 2016), land conversion
(Jacobson et al., 2015), cropland coverage (Fritz et al., 2015; See et al.,
2015c) and forest cover (Song et al., 2011; Schepaschenko et al., 2015).
These studies have shown the immense potential of crowdsourcing in
creating large amount of geographical validation data with limited re-
source investment, particularly valuable in areas where such informa-
tion did not previously exist.

However, the veracity and unknown quality and accuracy of the
mapped data has been the major concern related to scientific applica-
tions based on VGI data (Comber et al., 2013; See et al., 2015b). The
most important factors affecting the quality of collected information are
related to lack of good quality images to support the decisions when
collecting the data, and respondents’ insufficient capacity for inter-
pretation (See et al., 2013; Comber et al., 2016). In particular, studies
which require specialized interpretation skills are sensitive to the
quality of the collected data (Salk et al., 2016). In such cases, the
quality of mapping can be improved by turning VGI approaches into
structured participatory data collection campaigns by engaging groups
of experts with local knowledge and providing sufficient background
information and training for calibrating multiple interpretations
(Verplanke et al., 2016). These participatory GIS (PGIS) solutions are
promising combinations of open data catalogues, cloud computing ca-
pacity and motivated participants to tackle land and forest mappings
(Brown and Fagerholm, 2015). The integration of local knowledge and
automated classification processes calibrate and contextualize land and
forest information geographically (Hansen et al., 2014; Tropek et al.,
2014).

The Food and Agriculture Organization of the United Nations (FAO)
has developed an open-source software suite which enables the com-
bination of participatory mapping with cloud-based image access and
processing. One of these tools, Collect Earth, has been designed for
structured, augmented data collection based on visual interpretation on
Google Earth and other public sources of imagery (Bey et al., 2016). As
a PGIS platform it offers a new generation of participatory image in-
terpretation and classification environment, where easy-to-use ele-
ments of a public survey are combined with professionally structured
visual image interpretation tasks.

In this study we have tested the quality and relevance of PGIS ap-
proach combined with the use of open-access image catalogues and
software in mapping forest plantations at a regional scale in Tanzania,
East Africa, where access to large amounts of data and computing
power, as well as capacity of experts have previously prohibited effi-
cient mapping and monitoring of land resources. We have developed a
participatory mapping methodology, which utilizes open data catalo-
gues and cloud computing capacity (Open Foris suite, Google Earth
Engine) combined with participation of local experts. Our aim is to
evaluate the role of participation in collecting reference samples,
quality of the results and participant experiences as evidences of the
suitability of the method for participatory land and forest mapping, and
its possible generic uses and repetition for monitoring purposes.
Furthermore, our aim is to test the suitability of this methodology in
producing a high-resolution forest plantation map within our study area
in the Southern Highlands of Tanzania, a region experiencing a rapid
growth of smallholder-owned woodlots but where lack of spatially ex-
plicit estimates of the forest plantation coverage hampers the evalua-
tion of environmental and socio-economic impacts of the land devel-
opment.

2. Data and methods

2.1. Forest plantations in the Southern Highlands of Tanzania

The Southern Highlands area is located in Southwest Tanzania,
roughly within the administrative regions of Iringa, Mbeya and Njombe
(Fig. 1). Overall, the terrain of the region is variable, with the altitude
ranging from nearly 3000m.a.s.l. of Mount Rungwe, to less than
300m.a.s.l, in the floodplains of the Kilombero Valley. Unimodal rains
start in November and continue until April and rainfall ranges from
yearly average of 600mm in the North to over 2000mm in the
Southwest (Mbululo and Nyihirani, 2012). Due to its reliable and suf-
ficient rains and mild temperatures the Southern Highlands is the most
important forest plantation and silviculture area in Tanzania. The most
common planted trees are pine (Pinus patula, P. elliottii and P. caribaea),
several Eucalyptus spp., black wattle (Acacia mearnsii) and, in some
areas, teak (Tectona grandis).

Currently the coverage of planted forests is unknown in Tanzania,
with estimations ranging from 250,000 to 550,000 ha (Ngaga, 2011;
MNRT, 2015; FAO, 2015). The most recent national estimates were
produced in National Forest Resources and Monitoring Assessment
(NAFORMA 2009–2014), which was the first field reference based na-
tional forest inventory in the country (MNRT, 2015). NAFORMA pro-
duced two estimates on plantation cover for Tanzania. Based on the
field samples the planted forest area was estimated to be around
555,000 ha in the whole country, whereas according to the NAFORMA
land cover map there are 147,000 ha of planted forests in Tanzania and
around 70% of those plantations are located in the area of the Southern
Highlands (MNRT, 2013). However, the mapping has not been explicit
enough for deriving subnational estimates since only the large forest
plantation areas are depicted in the national level maps. Recently,
Southern Highlands has experienced a “timber rush” as many small-
holders have established small scale private plantations for future in-
vestment ranging in size from smaller than an acre to a couple of
hectares (Ngaga, 2011). These non-industrial private forestry estab-
lishments have been particularly promoted in this area through various
donor-funded incentive schemes, such as Hifadhi ya Mazingira (HIMA
1990–2002), and more recently Private Forestry Programme (PFP, since
2014), and Forestry Development Trust (FDT, since 2013) (Danida,
2007; FDT, 2016; PFP, 2016). There is an urgent need to produce a
baseline map of forest plantations for the area, and also introduce a
methodology of systematic, repeatable and open-access forest planta-
tion cover mapping with open data.

2.2. Design of the participatory mapping methodology

The forest plantation mapping was based on freely available global
geospatial datasets and satellite images combined with participatory
reference data collection, use of the Open Foris suite, Google Earth and
Google Earth Engine (Fig. 2). Both optical [Landsat 8 OLI (Operational
Land Imager) best-pixel mosaic from 2013 to 2015 and Sentinel-2 MSI
(Multispectral Instrument) median mosaic from 2015 to 2016] and
synthetic aperture radar [SAR; ALOS PALSAR (2010) and Sentinel-1
(2015)] satellite data sets were used in the mapping, as the combined
use has proven to be more effective in detecting forest covered areas
(Dong et al., 2013; Fagan et al., 2015; Torbick et al., 2016). The optical
datasets were accessible through Google Earth Engine (GEE) as pre-
processed and geo-referenced image collections, facilitating straight-
forward utilization of the images in the GEE code editor platform to
create cloud-free best pixel mosaics. We found this especially feasible in
our case as frequent cloud cover over the study area necessitated using
the best available pixels from multiple image acquisitions to create
cloud-free composites suitable for classification. At the time of our
analysis, the ALOS PALSAR imagery was not accessible through GEE
and analysis-ready Sentinel-1 SAR data on GEE still lacks the
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radiometric normalization along slopes. Due to the missing metadata,
respective correction routines couldn’t be applied in GEE. For that
reason, both ALOS PALSAR and Sentinel-1 data were pre-processed
with the Open Foris SAR toolkit (Vollrath et al., 2016) that provides
fully-automated pre-processing routines for analysis-ready SAR data.
Detailed description of the datasets and the pre-processing steps prior
the extraction of spatial variables is included in the supplementary
material.

The methodological approach was divided into 3 stages preceded by
the acquisition and pre-processing of the geospatial datasets (Fig. 2). In
the first stage, a preliminary forest plantation/non-plantation layer was
created. In the second stage, a reference data set of 7500 sample points
was generated and stratified based on the first stage land cover classes
and the sample locations were interpreted and assigned to land cover
classes by local experts in a two-week participatory mapping campaign
(Mapathon). In the third stage, final forest plantation map was created
and the accuracy of the map was assessed.

2.3. Creation of forest plantation mask (Stage1)

A sample point data set was stratified based on preliminary forest
plantation and forest area estimates. The total amount, geographical
distribution and extent of the sample points for the survey were con-
structed with the Open Foris Accuracy Assessment tool (https://github.
com/openforis/accuracy-assessment). We used an adjusted number of
points with a minimum sample size of 150 points to ensure enough
points represent forest plantations. Altogether, 963 sample points were
created with 150, 361 and 452 points falling on forest plantation, forest
and other land strata, respectively.

The Collect Earth tool of the Open Foris suite was used to collect
land cover information from the sample locations. Collect Earth bridges

Google Earth, Bing Maps and Google Earth Engine and allows online
visual interpretation of very high to medium resolution satellite ima-
gery including DigitalGlobe, SPOT, Sentinel-2, Landsat and MODIS (Bey
et al., 2016). In Collect Earth, the user fills the survey form for the
sample locations with relevant land cover information based on visual
interpretation (Fig. 3). The Collect Earth survey, simple at this stage
with binary plantation/non-plantation classes, was created using the
Collect tool of the Open Foris suite that enables the construction of a
structured survey form.

The collected samples were used as training data for image classi-
fication. The Landsat 8 OLI, ALOS PALSAR, Sentinel-1 and SRTM ele-
vation and slope data sets were used as inputs. A classification and
regressions tree (CART) classifier was chosen to carry out the classifi-
cation experiments in GEE. Additional samples (704) were added to the
training dataset to improve classification performance in forest plan-
tation and natural forest classes, as these were often mixed in initial
classification results. Adding these points, a total of 1667 reference
points were used for the first stage forest plantation mask.

2.4. Participatory data collection (Stage 2)

The objective of the second stage was to increase the accuracy and
precision of the first stage forest plantation mask by collecting a large
amount of reference points through the participation of local experts.
2500 sample points (7500 in total) were allocated to each stratum
(forest plantation, forest, and other land cover) based on the forest
plantation mask and tree cover layer of stage 1. The size of the sample
plot was adjusted to 30× 30m equivalent to the pixel size of the
imagery used in the classification stage. The survey was broadened
from the first stage to include also other land cover classes than forest
plantations. Systematic grid of 16 sample points within each plot was

Fig. 1. The study area is located in the Southern Highlands in the south-west corner of Tanzania lying in between 6.8°S and 10.9°S and 32°E and 37°E covering area of
ca 202,770 km2. The land cover is dominated by woodlands, bushlands and agricultural area. The largest forest plantations are concentrated in the vicinity of
Mafinga and Njombe (MNRT 2013).
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used to estimate the coverage of land use and land cover (LULC) ele-
ments within the plot area, guiding the respondent in the selection of
the land cover class. For woodland, bushland, grassland, and open land
the coverage proportions of LULC elements were defined by the
NAFORMA land cover system (MNRT, 2015) but apart from those, the
precept was to define the dominant LULC class inside the plot. In cases
where the plot area was shared equally by two or more land cover
classes, a previously agreed hierarchy was used (Martinez and
Mollicone, 2012) (Fig. 4). For forest plantations, the species, canopy
cover and age class were recorded along with information on the year of
establishment and latest clearing whenever possible. Also ‘no data’ and
low interpretation confidence options were included in the survey and
later used with the image date to indicate the quality of the data.

Making the process of a large reference sample data collection
through participation feasible, a PGIS data collection campaign,
Mapathon, was organized at the University of Dar es Salaam (UDSM)
Department of Geography HEI-GIS lab in October 2016. A total of 22

participants took part in the Mapathon: eight forestry, remote sensing
and mapping experts from the University of Dar es Salaam (UDSM),
Ardhi University (ARU), Private Forestry Programme (PFP) and
Tanzania Forest Service (TFS), and 14 MSc and BSc students from
UDSM and University of Bagamoyo (UOB) Geography Departments.

During the first four days, the participants were trained on using
Open Foris Collect Earth and on interpreting land cover and forest
patterns of the Southern Highlands based on high-resolution satellite
imagery. The focus of the training was on separating forest plantation
types (species and estimated age class). After the first week’s experience
and based on the participants’ feedback on the challenges of the in-
terpretation, the survey was slightly modified: ‘harvested plantation’
class was added in the open land cover classes due to its spectral
characteristics, and a choice of ‘eucalyptus or wattle’ was added in the
forest plantation types, since the respondents often had difficulties in
distinguishing between these two species.

During the second week of the Mapathon, the participants

Fig. 2. The overall study design was based on three stages. RS and DS marked in the derived variables of Landsat 8 OLI best pixel mosaic refer to rainy season and dry
season, respectively. Numbers 1 and 3 in the down-right corner of derived layer boxes refer to the classification stages in which the layers were used. The classifiers
used in the third stage were Random Forest (RF), classification and regressions tree (CART), and Support Vector Machine (SVM).
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interpreted LULC information visually on individually assigned batches
of plots through Collect Earth. In addition to the Google Earth and Bing
Maps imagery, the participants were offered a possibility to use pre-
viously downloaded auxiliary data in QGIS to support the interpreta-
tion: the Landsat 8 OLI 2-season mosaics, SRTM digital elevation model
(Jarvis et al., 2008) and WorldClim average temperature and mean
annual rainfall (Hijmans et al., 2005). These layers can be accessed
through the GEE extension of Collect Earth but were downloaded in
advance to avoid problems caused by the instabilities in the internet
connection.

During the Mapathon the participants collected information for
6871 samples including 387 ‘no data’ observations. 23% (1587) of the
interpreted samples had low confidence, poor accuracy or insufficient
marking and were modified by the research team, resulting in 6866
sample points available for the supervision of the land cover and forest
mapping. Out of all points, 1534 were forest plantation reference points
(Fig. 5, Table 1). Most of the plantation plots were interpreted as eu-
calyptus or wattle by species and growing (3–8 years old) by age.

The accuracy of the interpretation was evaluated against ground
data collected during field visits in 2015 and 2016. 147 known re-
ference samples were interpreted by local experts and research team
members during the Mapathon, and the accuracies were tabulated.
Furthermore, the confidence of all of the collected samples was eval-
uated by randomly choosing 300 forest plantation points and 300 other
land cover points (in total 8% of all points), to be interpreted by the
research team members. The interpretation agreements of local experts
and research team members were calculated and tabulated.

To evaluate the learning experiences of the local experts during the
Mapathon we collected systematic feedback using a form with specified
learning statements and open-ended questions. The statements allowed
participants to assess the quality of the event and personal learning
experiences by marking their agreement related to the statements on a
scale from 1 to 5. The open-ended questions allowed participants to
describe their key skills after the completion of the Mapathon cam-
paign. We asked which skills the participant felt they specifically
learned though the Mapathon, in which remote sensing skills they felt

the most confident after the event, and which skills they felt they still
needed more practice in.

2.5. Classification and accuracy assessment of forest plantation map (Stage
3)

The training data collected through the participatory GIS campaign
was used to produce the final forest plantation and planted tree species
maps. We left out the ALOS PALSAR 2010 from the data layers at this
stage to ensure a uniform temporal coverage of the data sets. By the
time of the stage 3 classification, Sentinel-2 imagery from the dry
season had become available and was added to the datasets. Due to
having most of the data sets in 30m resolution, the classification target
resolution was set to the same pixel size in GEE, which means that the
data being classified gets automatically resampled to 30m resolution
with nearest-neighbour method.

Three different classifiers (CART, Support Vector Machine and
Random Forest) were tested for the final classification in GEE. All of
these classifiers have a well-established methodological base and are
widely used in land cover and forest mapping applications (Fagan et al.,
2015; Khatami et al., 2016; Torbick et al., 2016; Zhao et al., 2016). The
accuracies were compared using a reference data set. Based on the best
accuracy, Random Forest with 150 trees was selected for creation of the
forest plantation area and planted species distribution maps.

Due to the heterogeneity of the study area landscape, forest plan-
tations that consisted of only 1 or 2 pixels were erased from the output
prior the accuracy assessment. Altogether 900 validation samples were
created with the Open Foris Accuracy Assessment tool and stratified
based on the three land cover classes used (forest plantation, natural
forest and other land cover). The amount of samples for each stratum
was fixed following the guidelines of Olofsson et al. (2014) leading to
100 samples for forest plantations and 328 and 472 for forest and other
strata, respectively (Fig. 6). The land cover information of these sam-
ples was interpreted through very high-resolution imagery in Google
Earth and Bing Maps by the research team, and used to estimate the
accuracy of the forest plantation map. In addition, 357 field

Fig. 3. Collect Earth allows easy filling of the structured survey form and viewing the plot area in different data repositories (Google Earth and Bing Maps in this
example).
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observations samples were collected during visits to the Southern
Highlands in February 2015, February 2016, and November 2016.
These samples were used to estimate the accuracy of the plantation
species map.

3. Results

3.1. Success of participation in reference sample collection

The participants had a varying degree of similarity in their inter-
pretations (Fig. 7, Table 2). The local experts had an average agreement
of 84% for distinguishing between forest plantation and other land
covers based on the field reference data. For the research team mem-
bers the average agreement was 97%. In some areas, inaccuracies were
overestimated since not all of the reference points were detectable from
the Google Earth images due to the time discrepancy between the field
observations and the visual interpretation based on older image date.

Thus, some of the differences may have been actual changes in land
cover. Generally, the interpretation agreements with reference data
were higher for those local experts who stated being proficient with
remote sensing (Fig. 7). Pines were detected with high accuracy by local
experts (86%) and research team members (100%). Since the amount of
Eucalyptus and Wattle samples in the reference data was small, we did
not calculate the agreements for these attributes.

The confidence assessment of the collected sample points resulted in
similar findings as the comparisons against field samples (Table 2). The
agreement of interpretation between local experts’ and research team
members’ observations was high regarding the forest plantation sam-
ples (94%). This means that forest plantations could be recognized from
other land cover types with relatively high confidence using visual in-
terpretation. The agreements were lower but still relatively high for
plantation species. Pine plantations were identified with 72% agree-
ment and eucalyptus and wattle plantations with 55% agreement.
These figures show that pines are more easily detected in the study area
while the canopy shape of eucalyptus and wattle resembles that of
natural forest causing more classification errors. Different age classes
were identified with overall agreement of 60%.

Overall, between local respondents and research team members the
LULC interpretation agreements were highest with forest class (69%)
and lower with the other classes (50% agreement or less). This may be
due to the heterogeneity character of the landscape which made it
difficult to label single land cover information for a plot. Also, inter-
pretation based on poor-quality images could have caused some of the
disagreement: among the 600 cross-referenced samples the authors
identified 22 images that were not suitable for interpretation due to
cloud coverage or blurry images on both Google Earth and Bing, al-
though these images had been interpreted by the respondents with high
confidence.

3.2. Capacity building of the Mapathon event

Based on the feedback collected from the local experts, the parti-
cipants felt that they were substantially benefiting from the Mapathon
experience. Only two experts had previous experience with Open Foris
tools, but most had been using Google Earth in their studies or pro-
fessional work. They all felt that the experience was positive in general
and that they were highly motivated to take part (avg. score 4.9/5.0).
Although the working process required training and some of the in-
terpretation tasks were challenging, the participants felt that their un-
derstanding of the exercise was high (avg. score 4.3/5.0). They felt that
their skills in remote sensing and image interpretation became much
better than before (avg. score 4.7/5.0). On top of learning remote
sensing and image interpretation, the participants also felt that they
learned organising and time-management issues, in addition to which
their understanding of the applications of remote sensing are now wider
and more real-world based.

The orientation week was considered necessary in providing the
participants with required skills for interpretation and to share
knowledge to modify the survey. According to the participants, still
more practice would have been needed in analytical image analysis
skills, in software skills and in demanding image interpretation tasks.
We also received plenty of feedback about a need for a follow-up
training on how to create a survey for Collect Earth. Such training was
organized as part of the results dissemination and discussion event ar-
ranged for the participants after the mapping work had been finished.

3.3. Forest plantation cover and distribution

Based on our participatory mapping methodology, using Random
Forest classifier there are 240,000 ± 87,000 ha of planted forests in
the Southern Highlands area and the overall accuracy of the plantation
map is 85 ± 2% (Table 3). These plantations cover approximately 1%
of the study area. The relatively large confidence interval area of the

Fig. 4. Land use and land cover (LULC) classes and their hierarchy for inter-
pretation.
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forest plantation area is explained by its relatively small coverage and
misclassifications with the dominant land cover classes. These new
forest plantation cover estimates in the Southern Highlands are
50–200% higher than the previous estimates made in the National
Forest Inventory NAFORMA Land Cover map (MNRT, 2013). Although
these figures are not explicitly comparable due to the national scope of
NAFORMA Land Cover map, the difference suggests that the previous
estimates of forest plantation coverage were underestimates.

In the Southern Highlands, the forest plantations are concentrated
in the highland range, in the regions of Iringa, Mbeya and Njombe
(Fig. 8A). The majority of the planted forest landscape is characterized
by numerous small and scattered woodlots (Fig. 8B). In contrast, there
are concentrations of high-intensity planted forests close to Mafinga,

Njombe and Mbeya. These areas are characterized by large industry-
scale dense forest patches (Fig. 8C).

At the species level the forest plantation map overall accuracy was
65 ± 4% with pines having the highest classification accuracies
(Table 4). The eucalyptus and wattle classes were combined due to their
problematic interpretation in the samples. Pines are the most dominant
plantation species covering 69% of all the forest plantations (Fig. 8).
The share of eucalyptus and wattle in the classification output is 31%.

The created plantation map of the Southern Highlands and the re-
ference and validations samples are freely available at PANGAEA
(https://doi.pangaea.de/10.1594/PANGAEA.894892), and the GEE
script is available at GitHub (https://github.com/utu-tanzania/sh-
plantations).

4. Discussion

Recent development of open-access data catalogues and cloud
computing capacity have improved possibilities for monitoring land
resources in areas with data scarcity and difficult field accessibility. Our
aim was to test the relevance of participatory GIS approach combined
with the improved access to data and software in providing locally
calibrated and spatially detailed forest and land cover information. A
carefully planned and conducted participatory mapping campaign re-
sulted in a high quality forest plantation reference sample set for the
extensive study area of the Southern Highlands, which was further
classified to a high-resolution spatially explicit forest plantation map.
Furthermore, the mapping campaign increased the capacity of the local
experts to conduct rigorous mapping of land cover based on open-
source data and software they all have access to. Our research shows

Fig. 5. Distribution of the samples collected by the local experts during the Mapathon. The sample distribution is denser in forest plantation and forest areas because
of the stratification based on the 1st stage classification.

Table 1
Number of collected samples during the Mapathon by forest plantation species
and age, and other land cover classes.

Plantation
species

P E/W Mix N/A

604 862 44 24

Plantation
age

Rp Gr Mat N/A

150 318 263 803

Land cover Bu Bl Cr Fn Gl Ol Otl Wa Wt Wl N/A
26 1039 815 727 479 177 26 5 184 1746 108

P=Pine, E/W=Eucalyptus or wattle, Rp=Recently planted, Gr=Growing,
Mat=Mature, Bu=Built up, Bl= Bushland, Cr=Cropland, Fn=Natural
forest, Gl=Grassland, Ol= open land, Otl=Other land, Wa=Water,
Wt=Wetland, Wl=Woodland.
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that this methodological set-up is a feasible approach to produce locally
fixed land cover information with limited resource investment espe-
cially in areas where previous information of such spatial data is gen-
eric or non-existent.

One of the main challenges in participatory reference data collec-
tion is the quality and consistency of the collected samples (Comber
et al., 2013; See et al., 2015b). Despite the challenges that participants
had in the image interpretation process in our study, the forest plan-
tations were interpreted with relatively high confidence, comparable to
previous studies with similar methodology (Clark et al., 2010). Care-
fully planned, structured and visually attentive survey eases partici-
pants’ interpretation work technically and leave more room for the

actual interpretation of the images. With the Open Foris suite, the de-
velopment of guided surveys with nested questionnaire and easy access
to auxiliary data sources is available (Bey et al., 2016). The approach
can greatly simplify otherwise rather challenging interpretation tasks.
Recent studies relying on crowdsourcing have stated that the expert
opinion depends on the case, having low influence on simple inter-
pretation tasks and more influence on challenging tasks (Salk et al.,
2016). Also, the familiarity of the study area has been reported to have
influence, depending however on the tasks and the geographical scope
of the survey (Comber et al., 2014). Our results are in concordance with
these findings clearly showing that when dealing with complex land-
scapes and challenging interpretation, methods and tools that enable
interpreters to focus more energy on the classification task improve
decision-making and ultimately improve results.

A structured survey and carefully adjusted level of interpretation
details can effectively reduce the misinterpretations. In our study, the
interpretation agreement declines when details are increased from
forest plantation coverage to specific plantation quality attributes. This
demonstrates that, at least in complex environments, it may not be
realistic to expect good accuracy on detailed level information such as
tree species or age derived from visual interpretation of optical data and
this should be noted when planning the purpose and methods of the
survey. Successful participatory mapping campaigns require a well-
designed practice of participation with simple data collection set-up,
embedded user motivation and realization of benefits of participation to
the users (Verplanke et al., 2016). These elements are especially crucial,
when participatory mapping approaches are taken into those parts of
the world where professional remote sensing practices and experiences
working with image interpretation are less established, but where
mapping processes are crippled without well-conducted participation

Fig. 6. Distribution of the validation samples.

Fig. 7. Hierarchical clustering of the expert interpretation of 147 known field
reference points clustered based on their Euclidean distance against the re-
ference points. Interpretations conducted by experts, proficient (Prof) with re-
mote sensing have smaller distance to field reference (Ref) compared to inter-
pretations of intermediate (Int) skills on remote sensing.
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and access to local knowledge.
Involving local expertise through participation has a significant

potential in facilitating forest and land resource mapping when large
amounts of training data are needed, when field-based data collection is
too laborious and costly, and when local knowledge in general is
needed to obtain relevant information of the forest and land features
(Clark et al., 2010). Gathering participants for an intensive data col-
lection campaign allows learning from each other, incorporating better
control over the reliability of the collected information and strength-
ening the remote sensing expertize of the participants. These elements
are all vital for the success of the mapping results and additionally they
empower developing societies with better access and opportunities for
natural resource mapping and management (McCall et al., 2015;
Verplanke et al., 2016).

Our results show that organized training is a fundamental element
in conducting participatory image interpretation and classification ef-
forts. The extensive training period prior to the actual mapping in-
creased the motivation and capacity of the local experts particularly to
interpret differences between forest plantations and natural forests, and
acted as an important preparation for the challenging interpretation
task. Participants’ pre-training ensures that essential skills are mastered
and the semantics of interpretation are calibrated between the experts
(Comber et al., 2016; Salk et al., 2016). The training period also allows
research team members to learn from local experts and use that
knowledge to modify the survey with respect to the skills of the re-
spondents, the complexity of the landscape and the interpretation
procedure.

In light of the fact that spatially explicit forest plantation estimates
were previously missing from the Southern Highlands, the forest
plantation map developed in this research gives access to one of the
most fundamental baseline datasets to base regional forest management
decisions on and to assess the sustainability of land development.
Compared to recent similar scale plantation mapping studies conducted
in the tropical regions, the achieved accuracy of our forest plantation
map is somewhat lower (Dong et al., 2012; Petersen et al., 2016;
Torbick et al., 2016). However, the mapping of rubber, oil and eu-
calyptus planted as spatially extensive monocultures is not comparable
with the heterogeneous landscape of our area of interest where the

majority of the forest plantations are smallholder woodlots. The com-
plex landscape structure of the Southern Highlands with multi-
functional agroforestry land uses and detailed topographical variation
affects the classification performance of small plantations by generating
mixed pixels. Furthermore, technical restrictions for detecting young
plantations and regenerating forests have been reported also in pre-
vious studies (Dong et al., 2013; le Maire et al., 2014). Therefore, the
map is a conservative representation of the forest plantations and most
likely an underestimation of the forest plantation area as indicated also
by larger plantation cover estimates generated based on the reference
data. Repetition of the mapping every 2–3 years would not only enable
identification of the dynamics of forest plantation cover, but also in-
crease the reliability of the baseline map.

This research was conducted foremost at regional level, but the
overall approach and the methodology used are applicable at different
scales and in different regions. The Open Foris survey tools facilitate
visual interpretation of very high-resolution satellite images, especially
useful for collecting a large number of training samples in a cost-ef-
fective way. Combined with learning-based expert participation, a
constantly updated global harmonized catalogue of satellite imagery
and geospatial datasets and cloud computing resources of GEE, this set-
up is a promising approach for environmental remote sensing in the
next years to come (Teluguntla et al., 2018). GEE is especially suitable
for repeatable multi-temporal and multi-sensor approaches due to the
capabilities of image collection filtering and reducing mechanisms in a
user-friendly JavaScript environment, providing a powerful tool for
dynamic land cover mapping over large geographic areas (Patel et al.,
2015; Xiong et al., 2016; Chen et al., 2017; Teluguntla et al., 2018). At
present, GEE hosts the most significant open satellite image collections
and the algorithm functionalities are constantly updated to meet the
needs of user community (Gorelick et al., 2017). However, there are
still limitations in available datasets (e.g. GEE’s pre-processing routine
for Sentinel-1 ingestion does not include radiometric slope correction
necessary for land cover classifications), algorithms (e.g. lack of readily
available pixel-based sun-sensor geometry correction), functionalities
(e.g. Boosted regression trees classification (BRT)), control over the
results, user memory and storage capacity. In many studies this leads to
data transfer between GEE and other software e.g. R statistics,

Table 2
The upper part of the table shows the agreements of local experts and research team members’ interpretation of 147 reference points collected from the field. The
local expert data includes all of the interpretations made by 16 respondents. The research team member data includes interpretations from 2 experts. The lower part
of the table shows the results of the confidence test of 600 interpreted samples.

Plantation interpretation agreements Species interpretation agreements Age class interpretation agreements

Field reference data Plantation Other LC P E/W Rp Gr Mat

Number of samples 68 79 52 –
Correctly classified by local experts 84% 55% 86% –
Correctly classified by research team members 97% 79% 100% –
Visual interpretation data
Number of samples 300 300 155 124 55 136 68
Agreements between local experts and research team

members
94% 86% 72% 55% 64% 63% 56%

P=Pine, E/W=Eucalyptus or wattle, Rp=Recently planted, Gr=Growing, Mat=Mature.

Table 3
Error matrix populated by the estimated proportion of area for each category. Rows represent map categories and columns represent reference categories. Accuracy
measures are presented with 95% confidence interval.

Forest plantation Natural forest Other Total Map area (ha) Estimated area (ha) User's accuracy Producer's accuracy

Forest plantation 0.0075 0.0006 0.0008 0.0089 180,011 239842 ± 87023 0.84 ± 0.07 0.96 ± 0.04
Natural forest 0.0044 0.3399 0.1100 0.4542 9,200,524 7132229 ± 425063 0.75 ± 0.04 0.95 ± 0.02
Other 0 0.0116 0.5252 0.5369 10,874,033 12882496 ± 420410 0.98 ± 0.01 0.76 ± 0.04

Total 0.0118 0.3521 0.6360 1 20,254,568
Overall accuracy 0.85 ± 0.02
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meanwhile losing some of the key benefits of conducting all the
methodological steps from data acquisition to result output at a single
platform.

Remote sensing as a professional discipline has crossed an important
border from a rather restricted expert-based science to broader citizen-
supportive practice and discourse. These changes have been and will

Fig. 8. (A) Spatial distribution and composition of the forest plantations in 2015 in the study area. Most of the areas are dominated by smallholder woodlots (B,
Njombe) while some areas are dominated by industry-scale plantations (C, Sao hill) visualized in 20× 20 km example areas.

Table 4
Error matrix populated by the estimated proportion of area for each category. Rows represent species map categories and columns represent reference categories.
Accuracy measures are presented with 95% confidence interval.

Pine Eucalyptus or wattle Natural forest Other Total User's accuracy Producer's accuracy

Pine 0.0050 0.0008 0 0.0003 0.0061 0.82 ± 0.06 0.68 ± 0.07
Euca or wattle 0.0006 0.0020 0.0002 0.0000 0.0028 0.71 ± 0.07 0.67 ± 0.07
Natural forest 0 0.1339 0.2096 0.0349 0.4542 0.46 ± 0.08 0.56 ± 0.08
Other 0.0405 0.0304 0.2026 0 0.5369 0.49 ± 0.11 0.65 ± 0.10

Total 0.1218 0.1671 0.4124 0.2987 1
Overall accuracy 0.65 ± 0.04
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continue to be enlarging societies’ general capacities in data driven
decision making, creating ownership, responsibility and commitment to
resource governance, and empowering citizens to spatial decision-
making and dialogue which follows from those decisions (See et al.,
2015b, Fritz et al., 2017).

5. Conclusions

Spatially explicit information on the extent of forest plantation
cover is essential to estimate the environmental and socio-economic
impacts of the forest dynamics and to support sustainable forest man-
agement, particularly in regions that experience a rapid expansion of
forest plantations. This study demonstrated the power of combining
local expertise with the opportunities created by the recent develop-
ment of free and online data repositories and cloud computing capacity
in producing credible spatial estimates on forest plantation cover and
species distribution in complex and heterogeneous landscapes. The
participatory approach was found particularly suitable as it creates
ownership and builds capacity enabling the repetitive monitoring of the
plantations. Since the methodology is based on open source applica-
tions it is applicable in all parts of the world at various scales, driven
however by the locality of sampling design. This set-up is a promising
approach for environmental remote sensing in the next years to come.
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