
Introduction to Google Earth Engine 
Training at CSC 11.-12.2.2019

Modules

Ulpu Leinonen | Project Researcher

University of Turku, Department of Geography and Geology

ulpu.leinonen@utu.fi



Day 1: Modules 1-3

• Scripts to modules:

https://goo.gl/ffxM49

https://goo.gl/ffxM49


Module 1
Introduction to GEE Code Editor



In this module you’ll learn about..

• Basic concepts and use of the JavaScript Code Editor in GEE

• Using the Code Editor for 
• Creating, sharing and saving scripts

• Creating geometries

• Searching imagery and displaying them on the map

• Different ways to visualize images

• Printing image metadata

• Simple computations on images

• Exporting and importing raster imagery



GEE Java Script Code Editor

https://code.earthengine.google.com/

https://code.earthengine.google.com/


• Google Earth Engine Code Editor is a web-based IDE 
(Integrated Development Environment) for the Earth Engine 
JavaScript API (Application Programming Interface). 

• It means that users can develop their own scripts which are 
sent to Google for processing, and the resultant map tiles 
and/or messages are sent back for display. 

• As all the processing happens in Google’s servers, you have a 
high amount of processing power available, which is the big 
advantage of Google Earth Engine.

What exactly is the Code Editor?



JavaScript in GEE

• JavaScript is the client-side scripting language used by many of 
Google's open-source projects.

• JavaScript is dynamically (weakly) typed like python or R. This 
means that the type is determined when assigned.

• Case sensitive, whitespaces ok

• Methods, variables and properties start with lowercase and the 
first letter of each word is Capitalized

• Statements end with semicolon; or a line break

• Shortcuts in GEE: CRTL+space autocompletes either the method 
or its parameters.



Client vs. server

• https://developers.google.com/earth-engine/client_server

• Images, Features, Dictionaries, Lists, Arrays, Geometries, Dates, 
Numbers and Strings: all are server-side objects. 
• That is, your client browser does not know anything about the objects 

in your script unless you explicitly request information about them e.g. 
by printing or showing them on map. 

 That request triggers a message being passed from Google to the 
Code Editor. If the message is large, there will be a corresponding slow 
down.

Everything starting with ee. happens in the server side (fast). Other stuff in the client
side  slower!

https://developers.google.com/earth-engine/client_server


For loops and if/else conditions
• Client-side for loops not recommended. The same results can be 

achieved using a map() operation.

• This allows the system to distribute the processing to different 
machines.

• While the API does provide a 
ee.Algorithms.if() algorithm, the 
use of it is strongly discouraged 
in favor of a more functional 
approach using map() and 
filters.



The Earth Engine Code Editor

Let’s start working with it! Browse to https://code.earthengine.google.com/

https://code.earthengine.google.com/


Module 2
Scale and projection in GEE

Image Collections



In this module you’ll learn about..

• How GEE handles scale and projection issues

• Image Collections
• Finding and reducing image collections

• Spatial and temporal filtering of image collections

• Isolating single images from image collections

• Different ways to composite/mosaic image collections

• Exporting large files

• Functions in GEE
• Using pre-defined functions for image collections

• Building and mapping functions over image collections



How does GEE handle scale?

• https://developers.google.com/earth-engine/scale

• Here, scale means pixel resolution. 

• Image assets in Earth Engine exist at multiple scales, in image 
pyramids. 

• Unlike other GIS and image processing platforms, the scale of 
analysis is determined from the output, rather than the input.

• Specifically, when you make a request for results, an image to 
display or a statistic, for example, you specify the scale at 
which data is input to the analysis.

https://developers.google.com/earth-engine/scale
https://en.wikipedia.org/wiki/Pyramid_(image_processing)


Pyramiding in GEE

Figure 1. A graphic representation of an image dataset in Earth 
Engine. Dashed lines represent the pyramiding policy for 
aggregating 2x2 blocks of 4 pixels. Earth Engine uses the scale 
specified by the output to determine the appropriate level of 
the image pyramid to use as input. 



How does GEE handle scale?

• The lowest level of the image pyramid represents image data at 
native resolution, when it ingested to Earth Engine. 

 During ingesting, the data are aggregated (according to the 
pyramiding policy) to create higher pyramid levels. The data are 
aggregated until the entire image fits within a 256x256 pixel tile. 

• When you use an image in your code, Earth Engine chooses a 
level of the pyramid with the closest scale less than or equal to 
the scale specified by your analysis and resamples (using nearest 
neighbor by default) as necessary.



Scale of analysis
• Scale of analysis in Earth Engine is 

determined on a "pull" basis.

• The scale at which to request inputs 
to a computation is determined 
from the output. 

• For example, if you add an image to 
the map with Map.addLayer(), the 
zoom level of the map in the Code 
Editor determines the scale at 
which inputs are requested from 
the image pyramid. 

• For other computations, you specify 
scale as an argument.

// Export an image, specifying scale and region.

Export.image.toDrive({

image: landsat,

description: 'imageToDriveExample',

scale: 30,

region: geometry

}); 



How does GEE handle projections?

• https://developers.google.com/earth-engine/projections

• The Code Editor map uses the Maps Mercator (EPSG:3857) 
projection.

• As with scale, the projection in which computations take place is 
determined on a "pull" basis.

• The output may be determined from a function parameter (e.g. crs), 
the map view in the Code Editor (which has a maps mercator
(EPSG:3857) projection), or with a reproject() call.

• Unlike scale, unless you need your computation to occur in a specific 
projection, there is generally no need to specify a projection.

https://developers.google.com/earth-engine/projections


Reprojecting

• You can force operations to be performed in a specific 
projection with the reproject() method. 

• Using reproject() results in the inputs being requested in the 
projection specified in the reproject() call. 

• Computations in your code before the reproject() call will be 
done in the specified projection.



Reprojecting



What are Image Collections?

• An Image Collection is a stack (time series) of 
images.
• e.g. all USGS Landsat 8 Collection 1 Tier 1 Raw 

Scenes available in GEE.

• Image collections have specific IDs in 
GEE
• E.g. LANDSAT/LC08/C01/T1

• What can you do with image collections in 
GEE?
• Filter (e.g. temporally/spatially),
• Composite/mosaic,
• Reduce, 
• Chart,
• Etc.



What are functions?
• Functions are a way to improve code readability and reusability by 

grouping sets of operations. 

• Define a function with the function keyword. 

• Function names start with a letter and have a pair of parentheses at the 
end. Functions often take parameters which tell the function what to do. 

• These parameters go inside parentheses (). The set of statements making 
up the function go inside curly brackets {}. The return keyword indicates 
what the function output is. 

var myFunction = function(parameter1, parameter2, parameter3) {

statement;

statement;

statement;

return statement;

};



Module 3
Working with vector data in GEE



In this module you’ll learn about..

• Vector geometries in GEE

• Features and Feature Collections in GEE

• Basic handling of vector data in GEE

• Some geometric operations that are available in GEE

• How to import and export vector data sets

• How to filter, reduce and map over feature collections.



What is vector data?

• Vector data consists of points, lines and polygons: represents 
individual spatial features (such as roads, bus stops or parks)

Vector Rastervs.



Geometry, Feature, FeatureCollection

• https://developers.google.com/earth-engine/geometries

• Geometry only has coordinates.
var point = ee.Geometry.Point([1.5, 1.5]) 

• Feature stores a dictionary of properties in addition to coordinates:
var pointFeature = ee.Feature(point, {ID: 42, type: ‘library'});

• Groups of related features can be combined into a 
FeatureCollection, to enable additional operations on the entire set 
such as filtering, sorting and rendering.

https://developers.google.com/earth-engine/geometries


• Previous way: Fusion tables

var points = 
ee.FeatureCollection('ft:10X7SUjDTiFJDyIA
58zLcptK8pwBwjj1BV12SQOgJ')

• Google plans to turn down 
Fusion Tables on December 
3, 2019  from now on as 
shapefiles through Assets
upload (New table asset)

• CSV option coming soon.

How to upload vector data into GEE?



Table ↔ FeatureCollection

Two(+) data structures which back a FeatureCollection in Earth Engine:

• Fusion Table
– Fits in memory

• <250 MB file size

• <1 MB per row

• <5000 properties (attributes), <100 is better

• <1,000,000 characters per cell (matters for geometries in KML)
• https://support.google.com/fusiontables/answer/171181

• Earth Engine Table Asset
– Column-oriented data store with spatial index

• Uploaded tables limited by the Shapefile spec

– <2 GB per file (.shp, .dbf, .shx, etc.)

– <10 characters for field names

– <255 characters per text field

– <=255 properties 

Credit of the slide: Nicholas Clinton / Google Earth Outreach https://goo.gl/THJ7ue 

https://support.google.com/fusiontables/answer/171181
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf


Day 2: Modules 4-7

• Scripts to modules:

https://goo.gl/DdMy2f

https://goo.gl/DdMy2f


Module 4
Charts, custom user interfaces and apps



In this module you’ll learn about..

• Creating charts out of imagery, such as bar charts, histograms, 
and band correlations.

• Charting changes in time

• Exporting the charts as images or tabular data

• Creating some custom user interfaces.



Charts in GEE
• https://developers.google.com/earth-engine/charts

• Use the ui.Chart to build charts in GEE.

• Charts can be displayed interactively through the Code Editor 
console, added to user interface components, viewed as 
separate web pages, or exported as images.

• The data used to create a chart is stored in a DataTable object 
which contains a schema for the table columns and data stored 
in the table rows.

• Customize chart styles with a dictionary of options.
• https://developers.google.com/chart/interactive/docs/customizing_char

ts

https://developers.google.com/earth-engine/charts
https://developers.google.com/chart/interactive/docs/customizing_charts


Custom user interfaces

• https://developers.google.com/earth-engine/ui

• Use the ui package to construct graphical interfaces for your 
Earth Engine scripts. 

• These interfaces can include simple input widgets like buttons 
and checkboxes, more complex widgets like charts and maps, 
panels to control the layout of the UI, and event handlers for 
interactions between UI widgets. 

https://developers.google.com/earth-engine/ui


Apps

• https://developers.google.com/earth-engine/apps

• Earth Engine Apps are dynamic, publicly accessible user 
interfaces for Earth Engine analyses. 

• With Apps, experts can use simple UI elements to leverage Earth 
Engine's data catalog and analytical power, for experts and non-
experts alike to use. 

• To publish your custom UIs, create an app key at 
https://developers.google.com/earth-engine/app_key

https://developers.google.com/earth-engine/apps
https://developers.google.com/earth-engine/app_key


Module 5
Image Classification in GEE



In this module you’ll learn about..

• Machine learning techniques available in GEE

• Unsupervised Classification and segmentation in GEE

• Supervised classification and sampling in GEE

• How to inspect and optimize the classification

• How to conduct accuracy assessment in GEE



What is image classification?

• The objective is to assign all pixels in the original image to 
particular classes or themes (e.g. water, forest, urban, etc.)

• Supervised classification
• The user guides the assignment of the pixels into different classes by 

providing training data (known values for certain pixels)  

• Unsupervised classification
• mathematical algorithm classifies pixels into clusters based on spectral 

signals.



Supervised Classification

• Phase 1: Defining training areas
• User defines the classes to be created and builds a data set of known 

land cover locations that is used to train the classifier

• Phase 2: Performing the classification
• The training data is used to “teach” the classifier the classes and their 

spectral signatures

• The classification itself is a statistical process in which every pixel is 
assigned to a pre-defined class with closest spectral signature 

• Phase 3: Examining the result 

• Accuracy assessment should follow classification 



Supervised classification in GEE

• The Classifier package handles supervised classification in 
Earth Engine. 

• The training data is a FeatureCollection with a property storing 
the class label and properties storing predictor variables. 

• Constraints: 

• no sparse training data; no masked pixels on any of the sampled points.

• Max. ~1M training features

• Class labels should be small, consecutive, non-negative integers 
representing classes. 

• If necessary, use remap() to convert class values to consecutive integers 
starting from 0. The predictors should be numeric.



Classifiers available in GEE

• CART, Random Forest, SVM, naiveBayes, GMO Maximum 
Entropy etc.

• See full list in GEE Docs by filtering with ee.Classifier



Unsupervised Classification (clustering) 

• The classification is ran by the program, user only defines 
some starting points, such as the number of clusters to be 
created
• Spectral classes are grouped first, based solely on the numerical 

information in the data
• Any individual pixel is compared to each discrete cluster to see which 

one it is closest to spectrally
• After classification, user defines explanations for the created clusters = 

land cover classes

• No a priori knowledge of the region is necessary 
• However, unsupervised classification is more applicable in the conditions of a good 

field knowledge



Unsupervised classification in GEE
• https://developers.google.com/earth-engine/clustering

• The ee.Clusterer package handles unsupervised classification (or 
clustering) in Earth Engine. These algorithms are currently based on 
the algorithms with the same name in Weka.
• NB: Known scaling problems: time, memory, stability

• The training data is a FeatureCollection with properties that will be 
input to the clusterer. 

• Unlike classifiers, there is no input class value for an Clusterer.

• Like classifiers, the data for the train and apply steps are expected to 
have the same number of values. 

• When a trained clusterer is applied to an image or table, it assigns an 
integer cluster ID to each pixel or feature.

https://developers.google.com/earth-engine/clustering
http://www.cs.waikato.ac.nz/ml/weka/


Image segmentation

• As opposed to clustering where you create categorical groups of 
pixels, image segmentation methods divide a digital image into 
(usually small) groups of connected pixels. 

• Each group (segment, or image-object) has a unique numeric ID 
in the resulting raster.



Module 6
Arrays and time series



In this module you’ll learn about..

• Arrays; when are arrays used in the GEE context

• How to do linear modelling in GEE

• How to build a pixel-based time series in GEE

• Other techniques to utilize GEE for image collection inspections 
over time



Arrays

• https://developers.google.com/earth-engine/arrays_intro

• Earth Engine represents 1-D vectors, 2-D matrices, 3-D cubes, 
and higher dimensional hypercubes with the ee.Array type.

• Arrays are a flexible data structure, but in exchange for the 
power they offer, they do not scale as well as other data 
structures in Earth Engine.

• If the problem can be solved without using arrays, the result will 
be computed faster and more efficiently. But if the problem 
requires a higher dimension model, flexible linear algebra, or 
anything else arrays are uniquely suited to, you can use the 
Array class.

https://developers.google.com/earth-engine/arrays_intro


Arrays ee.Array([

[0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863],

[-0.2848, -0.2435, -0.5436, 0.7243, 0.0840, -0.1800],

[0.1509, 0.1973, 0.3279, 0.3406, -0.7112, -0.4572],

[-0.8242, 0.0849, 0.4392, -0.0580, 0.2012, -0.2768],

[-0.3280, 0.0549, 0.1075, 0.1855, -0.4357, 0.8085],

[0.1084, -0.9022, 0.4120, 0.0573, -0.0251, 0.0238]

]);

1-axis

0-axis

0 1 2 3 4 5

0 0.3037 0.2793 0.4743 0.5585 0.5082 0.1863

1 -0.2848 -0.2435 -0.5436 0.7243 0.0840 -0.1800

2 0.1509 0.1973 0.3279 0.3406 -0.7112 -0.4572

3 -0.8242 0.0849 0.4392 -0.0580 0.2012 -0.2768

4 -0.3280 0.0549 0.1075 0.1855 -0.4357 0.8085

5 0.1084 -0.9022 0.4120 0.0573 -0.0251 0.0238

Array = List of 

lists

2-dimensional 

array = matrix



Array Dimensions

ee.Array(42);              // 0-D (Scalar)

ee.Array([1, 2, 3]);       // 1-D array, variation on the 0-axis

ee.Array([[1], [2], [3]]); // 2-D array (3x1), variation on the 0-axis

ee.Array([[1, 2, 3]]);        // 2-D array (1x3), variation on the 1-axis

https://code.earthengine.google.com/67765fda11eb50ae1d30ee0cfdbb1fb0Credit of the slide: Nicholas Clinton / Google Earth Outreach https://goo.gl/lMwd2Y 

https://code.earthengine.google.com/67765fda11eb50ae1d30ee0cfdbb1fb0


ee.Image ee.Image

2

3

1

Array Images: Raising the dimension

image.toArray()

ee.Image
image.toArray(1)

ee.Image

[1,2,3]

[1,2,3] [[1], [2], [3]]

1-D

1-D 2-D

multi-band image into a single-band image which stores a 1-D 
vector in each pixel

1-D vector pixels into a 2-D matrix in each pixel. 

Credit of the slide: Nicholas Clinton / Google Earth Outreach https://goo.gl/lMwd2Y 



Array Image Collections: Time series image

ee.Image

[ [b1,...,bp], 

⋮

[b1,...,bp] ]

2-D
imageCollection

.toArray()

Image axis (0)

Band axis (1)

Image collection into a single-band array image which stores a 
time dimesion on axis 0 and bands on axis 1.

Credit of the slide: Nicholas Clinton / Google Earth Outreach https://goo.gl/lMwd2Y 



Time series

• Tutorial video available at: https://youtu.be/xQGNAYL7z80

• Tutorial material available at: 
https://docs.google.com/document/d/1mNIRB90jwLuASO1JYas
1kuOXCLbOoy1Z4NlV1qIXM10/edit

https://youtu.be/xQGNAYL7z80
https://docs.google.com/document/d/1mNIRB90jwLuASO1JYas1kuOXCLbOoy1Z4NlV1qIXM10/edit


pt = β0 + β1t + et

pt = NDVI at time t

t = time

et = random error

We want β's for every pixel.

Linear model of time

Credit of the slide: Nicholas Clinton / Google Earth Outreach https://goo.gl/lMwd2Y 



Harmonic model of time

https://code.earthengine.google.com/a1f70b4cd409bac27dfb2c77884baf4d

When you have a spectral index, e.g. NDVI 
over time, and hypothesis is that the 
shape of the time series is harmonic over 
time, with:

𝛽0 + 𝛽1t + 𝛽2sin(t) + 𝛽3cos(t) = NDVI

constant value + linear trend in time + sine term + cosine term = NDVI

OR PTx4B4x1 = RTx1

P = pixel value B= betas (coefficients) R = response variable (e.g. NDVI over time)

Credit of the slide: Nicholas Clinton / Google Earth Outreach https://goo.gl/lMwd2Y 

https://code.earthengine.google.com/a1f70b4cd409bac27dfb2c77884baf4d


Constant {

Linear term

Phase

Amplitude

Harmonic

January 

1

(DOY=0

)
Credit of the slide: Nicholas Clinton / Google Earth Outreach https://goo.gl/lMwd2Y 



Module 7
Extras/Leftovers and how to continue from here



Closing thoughts

In this training you’ve learned about…

• the basic use of the JavaScript Code Editor

• accessing, filtering, and displaying satellite imagery through the
CodeEditor

• Filtering, reducing and working with image collections

• the use of vector data in Earth Engine

• charting and creating custom Uis

• classification

• arrays and time series analysis



How to continue?

• Online resources and tutorials: 
• https://developers.google.com/earth-engine/
• https://developers.google.com/earth-engine/tutorials
• https://developers.google.com/earth-engine/edu

• Debugging guide:
• https://developers.google.com/earth-engine/debugging

• Join the help forum:
• https://groups.google.com/forum/#!forum/google-earth-engine-

developers

• Google Earth Engine User Summits:
• https://sites.google.com/earthoutreach.org/eeus2018/home

https://developers.google.com/earth-engine/
https://developers.google.com/earth-engine/tutorials
https://developers.google.com/earth-engine/edu
https://developers.google.com/earth-engine/debugging
https://groups.google.com/forum/#!forum/google-earth-engine-developers
https://sites.google.com/earthoutreach.org/eeus2018/home


Feedback survey

• Please fill the training feedback (this is separate from the CSC 
feedback!): 
https://link.webropolsurveys.com/S/7635614D453178E7

• All development suggestions and comments about what worked 
well are highly valuable!

• Feel free to also give feedback now or via email: 
ulpu.leinonen@utu.fi

https://link.webropolsurveys.com/S/7635614D453178E7
mailto:ulpu.leinonen@utu.fi


Thank you for the training!


