
Remote Sensing of Environment 202 (2017) 18–27

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse
Google Earth Engine: Planetary-scale geospatial analysis for everyone
Noel Gorelick a,⁎, Matt Hancher b, Mike Dixon b, Simon Ilyushchenko b, David Thau b, Rebecca Moore b

a Google Switzerland, Brandschenkestrasse 110, Zurich 8002, Switzerland
b Google Inc., 1600 Amphitheater Parkway, Mountain View, CA, 94043, USA
⁎ Corresponding author.
E-mail address: gorelick@google.com (N. Gorelick).

http://dx.doi.org/10.1016/j.rse.2017.06.031
0034-4257/© 2017 The Author(s). Published by Elsevier I
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 9 July 2016
Received in revised form 5 June 2017
Accepted 27 June 2017
Available online 6 July 2017
Google Earth Engine is a cloud-based platform for planetary-scale geospatial analysis that brings Google's mas-
sive computational capabilities to bear on a variety of high-impact societal issues including deforestation,
drought, disaster, disease, food security, water management, climate monitoring and environmental protection.
It is unique in the field as an integrated platform designed to empower not only traditional remote sensing sci-
entists, but also a much wider audience that lacks the technical capacity needed to utilize traditional supercom-
puters or large-scale commodity cloud computing resources.

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Keywords:
Cloud computing
Big data
Analysis
Platform
Data democratization
Earth Engine
1. Introduction

Supercomputers and high-performance computing systems are be-
coming abundant (Cossu et al., 2010; Nemani et al., 2011) and large-
scale cloud computing is universally available as a commodity. At the
same time, petabyte-scale archives of remote sensing data have become
freely available from multiple U.S. Government agencies including
NASA, the U.S. Geological Survey, and NOAA (Woodcock et al., 2008;
Loveland and Dwyer, 2012; Nemani et al., 2011), as well as the Europe-
an Space Agency (Copernicus Data Access Policy, 2016), and a wide va-
riety of tools have been developed to facilitate large-scale processing of
geospatial data, including TerraLib (Câmara et al., 2000), Hadoop
(Whitman et al., 2014), GeoSpark (Yu et al., 2015), and GeoMesa
(Hughes et al., 2015).

Unfortunately, taking full advantage of these resources still requires
considerable technical expertise and effort. One major hurdle is in basic
information technology (IT)management: data acquisition and storage;
parsing obscure file formats; managing databases, machine allocations,
jobs and job queues, CPUs, GPUs, and networking; and using any of the
multitudes of geospatial data processing frameworks.

This burden can put these tools out of the reach of many researchers
and operational users, restricting access to the information contained
within many large remote-sensing datasets to remote-sensing experts
with special access to high-performance computing resources.

Google Earth Engine is a cloud-based platform that makes it easy to
access high-performance computing resources for processing very large
nc. This is an open access article und
geospatial datasets, without having to suffer the IT pains currently sur-
rounding either. Additionally, and unlikemost supercomputing centers,
Earth Engine is also designed to help researchers easily disseminate
their results to other researchers, policy makers, NGOs, field workers,
and even the general public. Once an algorithm has been developed
on Earth Engine, users can produce systematic data products or deploy
interactive applications backed by Earth Engine's resources, without
needing to be an expert in application development, web programming
or HTML.

2. Platform overview

Earth Engine consists of amulti-petabyte analysis-ready data catalog
co-located with a high-performance, intrinsically parallel computation
service. It is accessed and controlled through an Internet-accessible
application programming interface (API) and an associated web-based
interactive development environment (IDE) that enables rapid
prototyping and visualization of results.

The data catalog houses a large repository of publicly available
geospatial datasets, including observations from a variety of satellite
and aerial imaging systems in both optical and non-optical wave-
lengths, environmental variables, weather and climate forecasts and
hindcasts, land cover, topographic and socio-economic datasets. All of
this data is preprocessed to a ready-to-use but information-preserving
form that allows efficient access and removes many barriers associated
with data management.

Users can access and analyze data from the public catalog as well as
their own private data using a library of operators provided by the Earth
Engine API. These operators are implemented in a large parallel
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.06.031&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.rse.2017.06.031
mailto:gorelick@google.com
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


19N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
processing system that automatically subdivides and distributes com-
putations, providing high-throughput analysis capabilities. Users access
theAPI either through a thin client library or through aweb-based inter-
active development environment built on top of that client library
(Fig. 1).

Users can sign up for access at the Earth Engine homepage, https://
earthengine.google.com, and access the user interface, aswell as a user's
guide, tutorials, examples, training videos, function reference, and edu-
cational curricula. While prior experience with GIS, remote sensing and
scriptingmake it easier to get started, they are not strictly required, and
the user's guide is oriented towards domain novices. Accounts come
with a quota for uploading personal data and saving intermediate prod-
ucts, and any inputs or results can be downloaded for offline use.

3. The data catalog

The Earth Engine public data catalog is a multi-petabyte curated col-
lection of widely used geospatial datasets. The bulk of the catalog is
made up of Earth-observing remote sensing imagery, including the en-
tire Landsat archive aswell as complete archives of data from Sentinel-1
and Sentinel-2, but it also includes climate forecasts, land cover data and
many other environmental, geophysical and socio-economic datasets
(Table 1). The catalog is continuously updated at a rate of nearly 6000
scenes per day from active missions, with a typical latency of about
24 h from scene acquisition time. Users can request the addition of
new datasets to the public catalog, or they can upload their own private
data via a REST interface using either browser-based or command-line
tools and share with other users or groups as desired.

Earth Engine uses a simple and highly general data model based on
2D gridded raster bands in a lightweight “image” container. Pixels in an
Fig. 1. The Earth Engine interactiv
individual bandmust be homogeneous in data type, resolution and pro-
jection. However, images can contain any number of bands and the
bandswithin an image need not have uniform data types or projections.
Each image can also have associated key/value metadata containing in-
formation such as the location, acquisition time, and the conditions
under which the image was collected or processed.

Related images, such as all of the images produced by a single sensor,
are grouped together and presented as a “collection”. Collections pro-
vide fast filtering and sorting capabilities that make it easy for users to
search through millions of individual images to select data that meets
specific spatial, temporal or other criteria. For example, a user can easily
select daytime images from the Landsat 7 sensor that cover any part of
Iowa, collected on day-of-year 80 to 104, from the years 2010 to 2012,
with less than 70% cloud cover.

Images ingested into Earth Engine are pre-processed to facilitate fast
and efficient access. First, images are cut into tiles in the image's original
projection and resolution and stored in an efficient and replicated tile
database. A tile size of 256 × 256 was chosen as a practical trade-off be-
tween loading unneeded data vs. the overhead of issuing additional
reads. In contrast to conventional “data cube” systems, this data inges-
tion process is information-preserving: the data are always maintained
in their original projection, resolution and bit depth, avoiding the data
degradation that would be inherent in resampling all data to a fixed
grid that may or may not be appropriate for any particular application.

Additionally, in order to enable fast visualization during algorithm
development, a pyramid of reduced-resolution tiles is created for each
image and stored in the tile database. Each level of the pyramid is creat-
ed by downsampling the previous level by a factor of two until the en-
tire image fits into a single tile. When downsampling, continuous-
valued bands are typically averaged, while discrete-valued bands, such
e development environment.

http://earthengine.google.com
http://earthengine.google.com


Table 1
Frequently used datasets in the earth engine data catalog.

Dataset Nominal resolution Temporal granularity Temporal coverage Spatial coverage

Landsat
Landsat 8 OLI/TIRS 30 m 16 day 2013–Now Global
Landsat 7 ETM+ 30 m 16 day 2000–Now Global
Landsat 5 TM 30 m 16 day 1984–2012 Global
Landsat 4–8 surface reflectance 30 m 16 day 1984–Now Global

Sentinel
Sentinel 1 A/B ground range detected 10 m 6 day 2014–Now Global
Sentinel 2A MSI 10/20 m 10 day 2015–Now Global

MODIS
MOD08 atmosphere 1° Daily 2000–Now Global
MOD09 surface reflectance 500 m 1 day/8 day 2000–Now Global
MOD10 snow cover 500 m 1 day 2000–Now Global
MOD11 temperature and emissivity 1000 m 1 day/8 day 2000–Now Global
MCD12 Land cover 500 m Annual 2000–Now Global
MOD13 Vegetation indices 500/250 m 16 day 2000–Now Global
MOD14 Thermal anomalies & fire 1000 m 8 day 2000–Now Global
MCD15 Leaf area index/FPAR 500 m 4 day 2000–Now Global
MOD17 Gross primary productivity 500 m 8 day 2000–Now Global
MCD43 BRDF-adjusted reflectance 1000/500 m 8 day/16 day 2000–Now Global
MOD44 veg. cover conversion 250 m Annual 2000–Now Global
MCD45 thermal anomalies and fire 500 m 30 day 2000–Now Global

ASTER
L1 T radiance 15/30/90 m 1 day 2000–Now Global
Global emissivity 100 m Once 2000–2010 Global

Other imagery
PROBA-V top of canopy reflectance 100/300 m 2 day 2013–Now Global
EO-1 hyperion hyperspectral radiance 30 m Targeted 2001–Now Global
DMSP-OLS nighttime lights 1 km Annual 1992–2013 Global

USDA NAIP aerial imagery 1 m Sub-annual 2003–2015 CONUS
Topography

Shuttle Radar Topography Mission 30 m Single 2000 60°N–54°S
USGS National Elevation Dataset 10 m Single Multiple United States
USGS GMTED2010 7.5″ Single Multiple 83°N–57°S
GTOPO30 30″ Single Multiple Global
ETOPO1 1′ Single Multiple Global

Landcover
GlobCover 300 m Non-periodic 2009 90°N–65°S
USGS National Landcover Database 30 m Non-periodic 1992–2011 CONUS
UMD global forest change 30 m Annual 2000–2014 80°N–57°S
JRC global surface water 30 m Monthly 1984–2015 78°N–60°S
GLCF tree cover 30 m 5 year 2000–2010 Global
USDA NASS cropland data layer 30 m Annual 1997–2015 CONUS

Weather, precipitation & atmosphere
Global precipitation measurement 6′ 3 h 2014–Now Global
TRMM 3B42 precipitation 15′ 3 h 1998–2015 50°N–50°S
CHIRPS precipitation 3′ 5 day 1981–Now 50°N–50°S
NLDAS-2 7.5′ 1 h 1979–Now North America
GLDAS-2 15′ 3 h 1948–2010 Global
NCEP reanalysis 2.5° 6 h 1948–Now Global
ORNL DAYMET weather 1 km Annual 1980–Now North America
GRIDMET 4 km 1 day 1979–Now CONUS
NCEP global forecast system 15′ 6 h 2015–Now Global
NCEP climate forecast system 12′ 6 h 1979–Now Global
WorldClim 30″ 12 images 1960–1990 Global
NEX downscaled climate projections 1 km 1 day 1950–2099 North America

Population
WorldPop 100 m 5 year Multiple 2010–2015
GPWv4 30″ 5 year 2000–2020 85°N–60°S

20 N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
as classification labels, are sampled using one of min, mode, max or
fixed sampling. When a portion of data from an image is requested for
computation at a reduced resolution, only the relevant tiles from the
most appropriate pyramid level need to be retrieved from the tile data-
base. This power-of-two downscaling enables having data ready at a va-
riety of scales without introducing significant storage overhead, and
aligns with the common usage patterns in web-based mapping.

4. System architecture

Earth Engine is built on top of a collection of enabling technologies
that are available within the Google data center environment, including
the Borg cluster management system (Verma et al., 2015); the Bigtable
(Chang et al., 2008) and Spanner (Corbett et al., 2013) distributed data-
bases; Colossus, the successor to the Google File System (Ghemawat et
al., 2003; Fikes, 2010); and the FlumeJava framework for parallel pipe-
line execution (Chambers et al., 2010). Earth Engine also interoperates
withGoogle Fusion Tables (Gonzalez et al., 2010), aweb-based database
that supports tables of geometric data (points, lines, and polygons)with
attributes.

A simplified system architecture is shown in Fig. 2. The Earth Engine
Code Editor and third-party applications use client libraries to send in-
teractive or batch queries to the system through a REST API. On-the-
fly requests are handled by Front End servers that forward complex
sub-queries to Compute Masters, which manage computation distribu-
tion among a pool of Compute Servers. The batch system operates in a



Fig. 2. A simplified system architecture diagram.

Listing 1. Computing the difference of median composites from two seasons.

21N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
similar manner, but uses FlumeJava to manage distribution. Backing
both computation systems are a collection of data services, including
an Asset Database that contains the per-image metadata and provides
efficient filtering capabilities. The Borg cluster management software
manages each component of the system and each service is load-bal-
anced over multiple workers. Failure of any individual worker just re-
sults in the caller reissuing the query.

Queries to Earth Engine are based on functional composition and
evaluation. Users construct queries by chaining together operations
drawn from the Earth Engine library of more than 800 functions,
which range in complexity from simplemathematical functions to pow-
erful geostatistical, machine learning, and image processing operations.
The library makes it easy to express operations between images using a
form of image algebra, and supports higher-order functions: map() and
iterate() allow applying arbitrary functions to collections of images,
while reduce() is used to compute statistical results in a variety of
ways including regional, sliding-window, temporal, spectral and colum-
nar contexts. Table 2 summarizes the types of operations available in
the client library.

The bulk of the library's image-based functions are per-pixel alge-
braic operations that operate on a per-band or band-to-band basis, cov-
ering integer and floating point math, logical comparisons, bit
manipulation, type casting, conditional replacement and multidimen-
sional array operations for processing on array-valued pixels. Also in-
cluded are common pixel manipulation functions such as table lookup,
piecewise-linear interpolation, polynomial evaluation and the ubiqui-
tous normalized difference. The library leverages several pre-existing
machine-learning toolkits to provide easy access to more than 20
types of supervised classification, regression and unsupervised cluster-
ing, as well as operations on confusion matrices for accuracy assess-
ment. For machine-vision tasks, common kernel-based windowing
operations such as convolution, morphological operations, distance
and texture analysis are available as well as simple neighbor-based op-
erations such as gradient, slope, aspect and connectedness. Other capa-
bilities include image and band metadata operations, projection and
resampling manipulations, masking and clipping, image-to-image dis-
placement and coregistration and a variety of specialized tools common
to remote sensing applications including constrained spectral unmixing,
region growing and cost mapping operations.

These library functions can be composed to build up a description of
the computation the user wishes to perform. This computational
description ultimately takes the form of a directed acyclic graph
(DAG) in which each node represents the execution of an individual
function or data accessor and contains key/value pairs of named func-
tion arguments. This is, in essence, a pure functional programming envi-
ronment, and Earth Engine takes advantage of standard techniques
commonly used by functional languages, such as referential transparen-
cy and lazy evaluation, for significant optimization and efficiency gains.

Users write Earth Engine programs using client libraries (currently
available for the Python and JavaScript languages) that allow the user
to describe processing graphs using a familiar procedural programming
paradigm. The client libraries provide proxy objects for Images, Collec-
tions, and other data types such as numbers, strings, geometries, and
lists. User scripts manipulate these proxy objects, which record the
chain of operations and assemble them into a DAG that expresses the
complete computation. This DAG is then sent to the Earth Engine service
for evaluation.

DAGs are evaluated through a sequence of graph transformations.
Subgraphs are greedily simplified by immediate evaluation where pos-
sible, to avoid redundant computation and anywhere a parallel imple-
mentation isn't available. For example, a subgraph representing 3 + 7
will be immediately simplified to the value 10. Other nodes in the
graph are expanded, for example when a node that refers to a collection
of images is evaluated it is expanded to a sequence of images to be con-
sumed in batches by subsequent processing operations. Nodes that rep-
resent complex processing operations may employ any of several
strategies for distributed processing described in the next section.

Earth Engine is designed to support fast, interactive exploration and
analysis of spatial data, allowing the user to pan and zoom through re-
sults to examine a subset of the image at a time. To facilitate this,
Earth Engine uses a lazy computation model that allows it to compute
only the portions of output that are necessary to fulfill the current
request.

As an illustrative example, a user might wish to compute the differ-
ence between two seasonal composites, to highlight the changes due to
phenology or snow-cover. A simplistic example of this could be
expressed using the Earth Engine client library as the subtraction of
two composite images (Listing 1). This code creates two filtered collec-
tions, one of all Landsat 8 images for November, December, and January,
and a second of all Landsat 8 images from June, July, and August. A tem-
poral median value is computed for each band in each collection (to
minimize the effects of cloud and cloud shadows), and the resulting
composites are subtracted to compute the change in values. This com-
putational description is represented by the DAG in Fig. 3.
A traditional (non-lazy) computing environment might start com-
puting the pixels for one or both of the composites as soon as the ex-
pression is processed, which typically requires the input datasets to be
preprocessed to a commonmap projection, resolution, and region of in-
terest in advance.

Instead, Earth Engine takes a different approach: it postpones com-
puting output pixels until it knows more about the context in which
they are needed. For example, if the result is being displayed on an in-
teractive map then the map's zoom level and view bounds can dynam-
ically determine the projection and resolution of the output, and can
constrain the pixel computation to just the pixels that are viewable. Al-
ternatively, if the result is being used as an input to another computa-
tion, then that computation can request an appropriate projection,
resolution, and bounds for the pixels needed. This information is used
to automatically resample and reproject input data on the fly, making
it possible to rapidly visualize results or to use that expression in a



Table 2
Earth Engine function summary.

Function category Examples Mode of operation

Numerical operations
Primitive operations add, subtract, multiply, divide, etc. Per pixel/per feature
Trigonometric operations cos, sin, tan, acos, asin, atan, etc.
Standard functions abs, pow, sqrt, exp., log, erf, etc.
Logical operations eq, neq, gt, gte, lt, lte, and, or
Bit/bitwise operations and, or, xor, not, bit shift, etc.
Numeric casting int, float, double, uint8, etc.

Array/matrix operations
Elementwise operations (numeric operations as above) Per pixel/per feature
Array manipulation Get, length, cat, slice, sort, etc.
Array construction Identity, diagonal, etc.
Matrix operations Product, determinant, transpose, inverse, pseudoinverse, decomposition, etc.
Reduce and accumulate Reduce, accum

Machine learning
Supervised classification and regression Bayes, CART, Random Forest, SVM, Perceptron, Mahalanobis, etc. Per pixel/per feature
Unsupervised Classification K-Means, LVQ, Cobweb, etc.

Other per-pixel image operations
Spectral operations Unmixing, HSV transform, etc. Per pixel
Data masking Unmask, update mask, etc.
Visualization Min/max, color palette, gamma, SLD, etc.
Location Pixel area, pixel coordinates, etc.

Kernel operations
Convolution Convolve, blur, etc. Per image tile
Morphology Min, max, mean, distance, etc.
Texture Entropy, GLCM, etc.
Simple shape kernels Circle, rectangle, diamond, cross, etc.
Standard kernels Gaussian, Laplacian, Roberts, Sobel, etc.
Other kernels Euclidean, Manhattan and Chebyshev distance, arbitrary kernels and combinations

Other Image Operations
Band manipulation Add, select, rename, etc. Per image
Metadata properties Get, set, etc.
Derivative Pixel-space derivative, spatial gradient
Edge detection Canny, Hough transform
Terrain operations Slope, aspect, hillshade, fill minima, etc.
Connected components Components, component size
Image clipping Clip
Resampling Bilinear, bicubic, etc.
Warping Translate, changeProj
Image registration Register, displacement, displace
Other tile-based operations Cumulative cost, medial axis, reduce resolution with arbitrary reducers, etc.
Image aggregations Sample region(s), reduce region(s) with arbitrary reducers

Reducers
Simple Count, distinct, first, etc. Context-dependent
Mathematical sum, product, min, max, etc.
Logical Logical and/or, bitwise and/or
Statistical Mean, median, mode, percentile, standard deviation, covariance, histogram, etc.
Correlation Kendall, Spearman, Pearson, Sen's slope
Regression Linear regression, robust linear regression

Geometry Operations
Types Point, LineString, Polygon, etc. Per-feature
Measurements Length, area, perimeter, distance, etc.
Constructive operations Intersection, union, difference, etc.
Predicates Intersects, contains, withinDistance, etc.
Other operations Buffer, centroid, transform, simplify, etc.

Table/collection operations
Basic manipulation Sort, merge, size, first, limit, distinct, flatten, remap, etc. Streaming
Property filtering eq, neq, gt, lt, date range, and, or, not, etc.
Spatial filtering Intersects, contains, withinDistance, etc.
Parallel processing Map, reduce, iterate
Joins Simple, inner, grouping, etc.

Vector/raster operations
Rasterization Paint/draw, distance Per tile
Spatial interpolation Kriging, IDW interpolation
Vectorization reduceToVectors Scatter/gather

Other data types
Number, string, list, dictionary, date, daterange, projection, etc. Context-dependent

22 N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
more complex calculation without requiring the user to pre-specify
which pixels will be needed from it. Reprojection and resampling to
the requested output projection is by default performed using
nearest-neighbor resampling of the input(s), to preserve spectral integ-
rity, selecting pixels from the next-highest-resolution pyramid level of
each input. However, when the user has preferences for how this
reprojection is managed, they have the option of precisely controlling
the projection grid and can choose from bilinear and bicubic sampling
modes.

This approach encourages an interactive and iterative mode of data
exploration and algorithm development. Once a user has developed
an algorithm that they would like to apply at scale, they may submit a



Fig. 3. The DAG produced for Listing 1.

23N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
batch-processing request to Earth Engine to compute the complete re-
sult and materialize it either as an image in Earth Engine or as one or
more image, table, or video files for download.
5. Data distribution models

The functions in the Earth Engine library utilize several built-in
parallelization and data distribution models to achieve high perfor-
mance. Each of these models is optimized for a different data access
pattern.
5.1. Image tiling

Many raster processing operations used in remote sensing are local:
the computation of any particular output pixel depends only on input
pixels within some fixed distance. Examples include per-pixel opera-
tions such as band math or spectral unmixing, as well as neighborhood
operations such as convolution or texture analysis. These operations can
be easily processed in parallel by subdividing an area into tiles and com-
puting each independently. Processing each output tile usually requires
retrieving only one or a small number of tiles for each input. This fact,
combined with pyramided inputs and judicious caching, allows for
fast computation of results at any requested scale or projection. As pre-
viouslymentioned, inputs are reprojected on the fly as needed tomatch
the requested output projection. However, if the user determines that
using downsampled or reprojected inputs is undesired, they are free
to explicitly specify computation in the input's projection and scale.

Most tile-based operations are implemented in Earth Engine using
one of two strategies, depending on their computational cost. Expensive
operations, and operations that benefit significantly from computing an
entire tile at once, write results into a tile-sized output buffer. Tiles are
typically 256 × 256 pixels, to match the tiling-size of the input pre-
processing.

Inexpensive per-pixel operations are implemented using a pixel-at-
a-time interface inwhich the image processing operations in a graph di-
rectly invoke one another. This structure is designed to take advantage
of the fact that these operations execute in a Java Virtual Machine
(JVM) environment with a Just-In-Time (JIT) compiler that extracts
and compiles sequences of function calls that occur repeatedly. The re-
sult is that inmany cases, arbitrary chains of primitive image operations
such as band math can execute almost as efficiently as hand-built com-
piled code. Experiments detailing these efficiency gains are discussed in
Section 6.
5.2. Spatial aggregations

Just as some classes of computation are inherently local, others are
inherently non-local, such as the computation of regional or global sta-
tistics, raster-to-vector conversion, or sampling an image to train a clas-
sifier. These operations, or portions of them, can often still be performed
in parallel, but computing the final result requires aggregating together
many sub-results. For example, computing the mean value of an entire
image can be performed by subdividing the image, computing sums and
counts in parallel over each portion, and then summing these partial
sums and counts to compute the desired result.

In Earth Engine these types of computations are executed as distrib-
uted processes using a scatter-gather model. The spatial region over
which an aggregation is to be performed is divided into subregions
that are assigned to workers in a distributed worker pool, to be evaluat-
ed in batches. Each worker fetches or computes the input pixels that it
needs and then runs the desired accumulation operation to compute
its partial results. These results are sent back to themaster for this com-
putation, which combines them and transforms the result into the final
form. For example, when computing a mean value each worker will
compute sums and counts, themaster collects and sums these interme-
diates, and the final result will be the total sum divided by the total
count.

This model is very similar to a traditional Map/Reduce with a fixed
pool of mappers and a single reducer, however the user need not be
aware of this implementation andneed only specify themap projection,
resolution and spatial region in which to perform the operation, which
in turn determines the grid in which the input pixels will be computed
and the number of subregions. Typically each subregion is a multiple of
the default input tile size (usually 1024 × 1024 pixels) to minimize the
RPC overhead during these computations. However, because of the
large range of computational complexity of the intermediate products
overwhichusersmight be attempting to aggregate, controlswere intro-
duced to the system to allow users to adjust this multiple, should their
computation require it, e.g. due to per-worker memory limitations.
5.3. Streaming collections

Another common operation in the processing of large remote-sens-
ing datasets is time-series analysis. The same statistical aggregation op-
erations that can be applied spatially can also be applied temporally
over the images in a collection to compute per-pixel statistics of an en-
tire image stack through time. These operations are performed using a
combination of tiling and aggregation. Each output tile is computed in



Table 3
Results from Java JIT vs. C++ efficiency tests.

Test case C++ function C++ graph Java graph

SingleNode 0.057 ms 0.17 ms 0.056 ms
NormalizedDifference 0.40 ms 0.95 ms 0.41 ms
DeepProduct 18 ms 55 ms 43 ms
DeepCosineSum 160 ms 200 ms 240 ms
SumOfProducts 110 ms 790 ms 360 ms

24 N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
parallel using lazy image evaluation, in the manner described above.
Within each tile, an aggregation operation is performed at each pixel.
Tiles of pixel data from the images in the input collection are requested
in batches and “streamed” one at a time through the per-pixel
aggregators. Once all inputs that intersect the output tile have been
processed, the final transformation is applied at each pixel to generate
the output result.

This distributionmodel can be fast and efficient for aggregations that
have a small intermediate state (e.g. computing the minimum value),
but it can be prohibitively memory-intensive for those that don't (e.g.:
Pearson's correlation, which requires storing the complete data series
at each pixel prior to computing the final result). Streaming through
even very large collections can still be fast as long as the size of a tile
is significantly smaller than a full image. For example, the entire stack
of Landsat 5, 7 and 8 collections, collectively containing more than 5
million images, is less than 2000 tiles deep at any point, and only
about 500 deep on average.

5.4. Caching and common sub-expression elimination

Many processing operations in Earth Engine can be expensive and
data-intensive, so it can be valuable to avoid redundant computation.
For example, a single user viewing results on amapwill triggermultiple
independent requests for output tiles all of which frequently depend on
one or more common sub-expressions, such as a large spatial aggrega-
tion or the training of a supervised classifier. To avoid re-computing
values that have already been previously requested, expensive interme-
diate results are stored in a distributed cache using a hash of the sub-
graph as a cache key.

While it is possible that multiple users could share an item in the
cache, it is uncommon that two separate users independently make
identical queries. However, it is very common for a single user to repeat
the same queries during incremental algorithm development and thus
to benefit from this mechanism. The cache is also used as a form of
shared memory during distributed execution of a single query, storing
the intermediate results corresponding to subgraphs of the query.

When subsequent requests for the same computation arrive, the
earlier computation may already have completed or it may still be in
progress. Previously computed results are simply retrieved and
returned by checking the cache prior to starting expensive operations.
To handle the case in which the earlier computation is still in progress,
all computations are sent to distributed workers via a small number of
computation master servers. These servers track the computations
that are executing in the cluster at any given moment. When a new
query arrives that depends on some computation already in progress,
that query will simply join the original query in waiting for the computa-
tion to complete. Should a compute master fail, handles to in-progress
computations could be lost, possibly allowing redundant computations
to start, but only if a query is re-requested before the existing ones finish.

6. Efficiency, performance, and scaling

Earth Engine takes advantage of the Java Just-In-Time (JIT) compiler
to optimize the execution of chains of per-pixel operations that are
common in image processing. To evaluate the efficiency gains provided
by the JIT compiler, a series of experiments were conducted to compare
the performance of three execution models: executing a computation
graph in Java using the JIT compiler; executing a graph using a similar
general implementation in C++; and finally, specialized native C++
code in which the same calls are made directly instead of through a
graph, thereby avoiding function virtualization. Five test cases, each
testing a different type of image computation graph, were explored:

• SingleNode: A trivial graph with a single node consisting of an image
data buffer. This test simply computes the sum of all the values in a
buffer.
• NormalizedDifference: A graph that computes the normalized
difference of two input buffers. This small-graph scenario contains
five nodes in total: two input nodes, one sum, one product, and one
quotient.

• DeepProduct: A graph that consists of 64 binary product nodes in a
chain, computing the product of 65 input nodes.

• DeepCosineSum: A graph with the same structure as DeepProduct,
but where each node computes the more expensive binary operation
cos(a + b).

• SumOfProducts: A graph that computes the sum over all pairwise
products of 40 inputs. This graph has 40 input nodes, 780 product
notes, and a tree of 779 sum nodes. Here the total number of nodes
is much larger than the number of input nodes, allowing us to evalu-
ate the performance of complex graphs of primitive operations on
fixed amounts of input data, a common real-world scenario.

Each of these tests was performed on a single 256 × 256-pixel tile
using a single-threaded execution environment on an Intel Sandy
Bridge processor at 2.6 GHz, a configuration that is representative of
commercial cloud data center environments, with all non-essential sys-
tem services disabled to minimize profiling noise. The results, summa-
rized in Table 3, show that in 4 out of 5 of these common test cases,
Java with the JIT compiler outperforms similar dynamic graph-based
computation in C++by asmuch as 50%, and in one case it even outper-
forms a direct C++ implementation.

6.1. System throughput performance

In the Google data center, CPUs are abundant. In this environment
raw efficiency, while still important, is not as important as the ability
to efficiently distribute complex computations across many machines
and much of Earth Engine's performance is due to its ability to marshal
and manage a large number of CPUs on a user's behalf. There is a hard
ultimate upper limit on the efficiencies that can be achieved through
code or query optimization, but there are fewer limitations on the addi-
tional computing resources that can be brought to bear.

Experiments were conducted to demonstrate Earth Engine's ability
to scale horizontally (Fig. 4). In this test, two large collections of Landsat
images were reprojected to a common projection, temporally aggregat-
ed on a per-pixel basis and spatially aggregated down to a single num-
ber while varying the number of CPUs per run. The two collections
consisted of all available Landsat 8 Level-1T images acquired from
2014 to 01-01 to 2016–12-31, covering CONUS (26,961 scenes,
1.21 trillion pixels) and Africa (77,528 scenes, 3.14 trillion pixels).
Tests were run using shared production resources over multiple days
and times to capture the natural variability due to load on the fleet.
The results show a nearly linear scaling in throughput with the number
of machines.

7. Applications

Earth Engine is in use across a wide variety of disciplines, covering
topics such as global forest change (Hansen et al., 2013), global surface
water change (Pekel et al., 2016), crop yield estimation (Lobell et al.,
2015), rice paddy mapping (Dong et al., 2016), urban mapping (Zhang
et al., 2015; Patel et al., 2015), flood mapping (Coltin et al., 2016), fire



Fig. 4. Horizontal scaling tests results.

25N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
recovery (Soulard et al., 2016) andmalaria riskmapping (Sturrock et al.,
2014). It has also been integrated into a number of third-party applica-
tions, for example analyzing species habitat ranges (Map of Life, 2016),
monitoring climate (Climate Engine, 2016), and assessing land use
change (Collect Earth, 2016). The details of a few of these applications
will illustrate how Earth Engine's capabilities are being leveraged.

Hansen et al. (2013) characterized forest extent, loss, and gain from
2000 to 2012 using decision trees generated from an extensive set of
training data and a deep stack of metrics computed from large collec-
tions of Landsat scenes. Filtering operations supported by the data cata-
log reduced the 1.3 M Landsat scenes available at the time to 654,178
growing-season scenes from the study period. These images were
then screened for clouds, cloud shadows, and water, and converted
from raw Landsat digital numbers to normalized top of atmosphere re-
flectance. All necessary data access, format conversion, cartographic
reprojection, and resampling were handled automatically by the sys-
tem. Operations in the API were used to compute input metrics, such
as per-band percentile values and linear regressions of reflectance
values versus image date. These metrics, along with training data,
were used to generate decision trees, whichwere applied to themetrics
globally to produce the final output data. Those results were used for
publication and made available as part of the Earth Engine catalog for
further analysis by others.

Many other users, both scientific and operational, have since suc-
cessfully built on the Hansen results to produce derivative results
using Earth Engine. Global Forest Watch (2014) incorporated it into
an interactive analysis application using Earth Engine to perform on-
the-fly calculations of summary statistics. Joshi et al. (2016) used it to
track changes in tiger habitat by extracting forest loss within protected
areas for each year, finding that the areasmost suitable for doubling the
wild tiger population were also the best protected.

In another example, Lobell et al. (2015) related the output of hun-
dreds of crop model simulations to vegetation indices, such as the
green chlorophyll vegetation index (GCVI), that are measurable with
satellite data. They then related simulated yields tomeasured vegetative
indices and weather for a set of dates early in the growing season and
late in the growing season. This resulted in a table of regression coeffi-
cients for each pairwise combination of early/late dates. They used
Earth Engine to select, on a per-pixel basis, the best Landsat scenes for
the early and late periods, by first calculating reflectance of the Landsat
scenes using LEDAPS (Masek et al., 2006), automatically removing
cloudy scenes using Earth Engine's SimpleCloudScore function, com-
puting GCVI values, and finally selecting the scenes with the highest
GCVI. Once the best pair of Landsat scenes was determined for a given
pixel, weather data stored in Earth Engine and the GCVI were used to
compute the predicted yield. This method was applied to roughly
6.75 million hectares of maize and soy fields in the Midwestern United
States to compute annual yields from 2008 to 2012. The total computa-
tion completed in approximately 2 min per 10,000 km2 per year.

8. Challenges and future work

One of the benefits of using Earth Engine is that the user is almost
completely shielded from the details of working in a parallel processing
environment. The system handles and hides nearly every aspect of how
a computation is managed, including resource allocation, parallelism,
data distribution, and retries. These decisions are purely administrative,
and none of them can affect the result of a query, only the speed at
which it is produced. The price of liberation from these details is that
the user is unable to influence them: the system is entirely responsible
for deciding how to run a computation. This results in some interesting
challenges in both the design and use of the system.

8.1. Scaling challenges

The Earth Engine system as a whole can manage extremely large
computations, but the underlying infrastructure is ultimately clusters
of low-end servers (Barroso et al., 2013). In this environment, the option
of configuring arbitrarily large machines is not available, and there is a
hard limit on the amount of data that can be brought into any individual
server. This means that users can only express large computations by
using the parallel processing primitives provided in the Earth Engine li-
brary and some non-parallelizable operations simply cannot be per-
formed effectively in this environment. Additionally, the requirement
to express computations using the Earth Engine library means that
existing algorithms and workflows have to be converted to use the
Earth Engine API to utilize the platform at all.

Earth Engine's API by design makes it easy to express extremely
large computations. For example, it would take only a few lines of
Earth Engine code to request a global aggregation of the
800 billion pixel Hansen forest cover map: while this computation is
straightforward, simply retrieving all the input pixels from storage in-
volves a substantial quantity of resources for a significant length of
time. By chaining operations on large collections of data over a wide
range of spatial scales, it is easy to express queries that vary in cost by
many orders of magnitude and to describe computations that are im-
practical even in an advanced parallel computing environment.

Since Earth Engine is a shared computing resource, limits and other
defenses are necessary to ensure that users do not monopolize the sys-
tem. For interactive sessions, Earth Engine imposes limits on the maxi-
mum duration of requests (currently 270 s), the total number of
simultaneous requests per user (40), and the number of simultaneous
executions of certain expensive operations such as spatial aggregations
(25). For illustrative purposes, the interactive computational time-limit



26 N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
is sufficient to complete the following workflow within a single
timeout: Retrieve all Landsat 8 images covering the states of California
and Nevada for 1 year (1177 scenes), use them to compute a maxi-
mum-NDVI composite, and from that an average peak-NDVI for each
of the 17 IGBP land cover classes over the region (735,000 km2). Note
that the bulk of the time for this example is spent in transferring the
raw pixels for the full-resolution spatial aggregation; simply creating
and displaying the maximum-NDVI composite completes in a few
seconds.

None of the interactive limits apply when queries are invoked in a
batch context, and jobs that are orders of magnitude larger can run
there, but there is still a limit to what each individual machine can ac-
commodate when a request involves tile-based computations that can-
not be streamed or further distributed using the current data models.
This memory limit does not translate directly into a specific spatial or
temporal limit, but a common rule of thumb for the maximum size of
these sorts of requests is a stack depth of about 2000 bytes per pixel.
The current RPC and caching system imposes an additional limitation
that applies in both interactive and batch cases: individual objects to
be cached cannot exceed100MB in size. This limit ismost often encoun-
tered when the output of an aggregation operation is large, such as
extracting data to train a machine-learning algorithm where it may
limit the total number of points in a training set.

Batch jobs are each run independently making it much harder for
them to negatively impact each other, but to prevent monopolization,
jobs are still managed using a shared queuing system, and under
heavy load, jobs may wait in the queue until resources become
available.

8.2. Computational model mismatch

While parallelizable operations are very common in remote sensing,
there are of course many other classes of operations that are not
parallelizable or are not accommodated by the parallel computation
constructions available in Earth Engine. The platform is well suited to
per-pixel and finite neighborhood operations such as band-math, mor-
phological operations, spectral unmixing, template matching and tex-
ture analysis, as well as long chains (hundreds to thousands) of these
sorts of operations. It is also highly optimized for statistical operations
that can be applied to streaming data, such as computing statistics on
a time-series stack of images, and can easily handle very deep stacks
this way (ie: millions of images; trillions of pixels). It performs poorly
for operations inwhich a local value can be influenced by arbitrarily dis-
tant inputs, such as watershed analysis or classical clustering algo-
rithms; operations that require a large amount of data to be in hand at
the same time, such as training many classical machine learning
models; and operations that involve long-running iterative processes,
such as finite element analysis or agent-based models. Additionally,
data intensive models that require large volumes of data not already
available in Earth Engine could require substantial additional effort to
ingest.

These computational techniques can still be applied in Earth Engine,
but often with sharp scaling limits. Extending Earth Engine to support
new computational models is an active area of research and develop-
ment. Users with problems that do not match Earth Engine's computa-
tional model can run computations elsewhere in the Google Cloud
Platform to capitalize on running computations close to the underlying
data and still taking advantage of Earth Engine for its data catalog, pre-
processing, post-processing, and visualization.

8.3. Client/server programming model

Earth Engine users are often unfamiliar with the client-server pro-
gramming model. The Earth Engine client libraries attempt to provide
a more familiar procedural programming environment, but this can
lead to confusion when the user forgets that their local programming
environment (e.g. a Python script) is not performing any of the compu-
tation itself. The entire chain of operations is recorded by client-side
proxy objects and sent to the server for execution, but this means that
it is not possible to mix Earth Engine library calls with standard local
processing idioms. This includes some basic language features like con-
ditionals and loops that depend on computed values, aswell as standard
numerical packages. Users can still use these external tools, but they
cannot apply them directly to Earth Engine proxy objects, sometimes
leading to confusion. Fortunately, these programming errors are usually
easy to resolve once identified.

It is worth noting that this style of programmingmodel is becoming
increasingly common for large-scale cloud-based computing; it is also
used in TensorFlow (Abadi et al., 2016) when constructing and execut-
ing graphs.

8.4. Advancing the state of the art

The overarching goal of Earth Engine is tomake progress on society's
biggest challenges by making it not just possible, but easy, to monitor,
track and manage the Earth's environment and resources. Doing so re-
quires providing access not just to vast quantities of data and computa-
tional power, but also increasingly sophisticated analysis techniques,
and making them easy to use.

To this end, experiments are ongoing in the integration of deep
learning techniques (Abadi et al., 2016) and facilitating easy access to
other scalable infrastructures such as Google Compute Engine
(Gonzalez and Krishnan, 2015) and BigQuery (Tigani and Naidu, 2014).

Acknowledgements

The authors would like to thank the many scientists and practi-
tioners whose requests, advice and critiques inspired the initial creation
of Earth Engine, guided its ongoing development and drove positive sci-
entific and societal outcomes; special thanks to Dr. Carlos Souza, Dr.
Gilberto Câmara, Prof. Matthew Hansen, Dr. Alan Belward, Prof. Martin
Herold, and Prof. Curtis Woodcock. Thanks to Tyler Erickson for provid-
ing the script and data visualization shown in Fig. 1. Thanks to the rest of
the Earth Engine team: Christiaan Adams, Jeffrey Beis, Peter Birch, Chris-
topher Brown, David Carmichael, Andrew Chang, Nicholas Clinton, Joel
Conkling, Michael DeWitt, Eric Engle, Tyler Erickson, Hector Gonzalez,
Chris Herwig, Max Heinritz, Rachel Inman, Renee Johnston, Allison
Lieber, Igor Nazarenko, Eric Nguyen, Eduardo Poyart, Kevin Reid,
Amanda Robinson, Randy Sargent, Nadav Savio, Kurt Schwehr, Lauren
Scott, Max Shawabkeh, and Frank Warmerdam. Finally, we would like
to thank the providers of the hundreds of public datasets in Earth En-
gine; in particular, NASA, USGS, NOAA, and EC/ESA, whose enlightened
open data policies and practices are responsible for the bulk of the data
in our catalog. Special thanks to Tom Loveland of USGS whose team
worked with us starting in 2009 for more than three years to bring
the entire multi-decadal Landsat archive off tape and online for the first
time.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., et al., 2016.
Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems.
arXiv preprint arXiv:1603.04467.

Barroso, L.A., Clidaras, J., Hölzle, U., 2013. The datacenter as a computer: an introduction to
the design of warehouse-scale machines. Synth. Lect. Comput. Archit. 8 (3), 1–154.

Câmara, G., Souza, R., Pedrosa, B., Vinhas, L., Monteiro, A.M.V., Paiva, et al., 2000. TerraLib:
technology in support of GIS innovation. Proc. II Brazilian Symposium on
GeoInformatics. GeoInfo2000. 2, pp. 1–8.

Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R.,Weizenbaum, N.,
2010. FlumeJava: easy, efficient data-parallel pipelines. ACM SIGPLAN Not. 45 (6),
363–375.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., et
al., 2008. Bigtable: a distributed storage system for structured data. ACM Trans.
Comput. Syst. 26 (2), 4.

Climate Engine, 2016. Desert Research Institute, University of Idaho. http://climateengine.
org (accessed July 2016).

http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0005
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0005
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0010
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0010
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0015
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0015
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0015
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0020
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0020
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0025
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0025
http://climateengine.org
http://climateengine.org


27N. Gorelick et al. / Remote Sensing of Environment 202 (2017) 18–27
Collect Earth, 2016. United Nations Food and Agriculture Organization. http://www.
openforis.org/tools/collect-earth.html (accessed July 2016).

Coltin, B., McMichael, S., Smith, T., Fong, T., 2016. Automatic boosted flood mapping from
satellite data. Int. J. Remote Sens. 37 (5), 993–1015.

Copernicus Data Access Policy, 2016. http://www.copernicus.eu/main/data-access
(accessed June 30, 2016).

Corbett, J.C., Dean, J., Epstein, M., Fikes, A., Frost, C., Furman, J.J., Ghemawat, S., et al., 2013.
Spanner: Google's globally distributed database. ACM Trans. Comput. Syst. 31 (3), 8
(TOCS).

Cossu, R., Petitdidier, M., Linford, J., Badoux, V., Fusco, L., Gotab, B., Hluchy, L., et al., 2010. A
roadmap for a dedicated earth science grid platform. Earth Sci. Inf. 3 (3).

Dong, J., Xiao, X., Menarguez, M.A., Zhang, G., Qin, Y., Thau, D., Biradar, C., Moore, B., 2016.
Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phe-
nology-based algorithm and Google Earth Engine. Remote Sens. Environ 185,
142–154.

Fikes, A., 2010. Storage Architecture and Challenges. http://goo.gl/pF6kmz (accessed June
30, 2016).

Ghemawat, S., Gobioff, H., Leung, S., 2003. The Google file system. Proc. SOSP 29–43.
Global Forest Watch, 2014. World Resources Institute, Washington, DC. http://www.

globalforestwatch.org (accessed June 30, 2016).
Gonzalez, J.U., Krishnan, S.P.T., 2015. Building Your Next Big Thing with Google Cloud

Platform: A Guide for Developers and Enterprise Architects. Apress.
Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., et al., 2010.

Google fusion tables: web-centered data management and collaboration. ACM
SIGMOD 1061–1066.

Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., et al.,
2013. High-resolution global maps of 21st-century forest cover change. Science 342,
850–853.

Hughes, J.N., Annex, A., Eichelberger, C.N., Fox, A., Hulbert, A., Ronquest, M., 2015.
GeoMesa: a distributed architecture for spatio-temporal fusion. SPIE Defense+ Secu-
rity (pp. 94730F–94730F). Int. Soc. Optics Photonics.

Joshi, A.R., Dinerstein, E., Wikramanayake, E., et al., 2016. Tracking changes and
preventing loss in critical tiger habitat. Sci. Adv. 2 (4), e1501675.

Lobell, D., Thau, D., Seifert, C., Engle, E., Little, B., 2015. A scalable satellite-based crop yield
mapper. Remote Sens. Environ. 164, 324–333.
Loveland, T.R., Dwyer, J.L., 2012. Landsat: Building a strong future. Remote Sens. Environ.
122, 22–29.

Map of Life, 2016. http://www.mol.org (accessed June 30, 2016).
Masek, J.G., Vermote, E.F., Saleous, N.E.,Wolfe, R., Hall, F.G., Huemmrich, K.F., et al., 2006. A

Landsat surface reflectance dataset for North America, 1990–2000. Geosci. Remote
Sensing Lett. IEEE 3, 68–72.

Nemani, R., Votava, P., Michaelis, A., Melton, F., Milesi, C., 2011. Collaborative
supercomputing for global change science. EOS Trans. Am. Geophys. Union 92 (13),
109–110.

Patel, N., Angiuli, E., Gamba, P., Gaughan, A., Lisini, G., Stevens, F., Tatem, A., Trianni, A.,
2015. Multitemporal settlement and population mapping from Landsat using google
earth engine. Int. J. Appl. Earth Obs. Geoinf. 35, 199–208.

Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S., 2016. High-resolution mapping of global
surface water and its long-term changes. Nature.

Soulard, C.E., Albano, C.M., Villarreal, M.L., Walker, J.J., 2016. Continuous 1985–2012
Landsat monitoring to assess fire effects on meadows in Yosemite National Park, Cal-
ifornia. Remote Sens. 8 (5), 371.

Sturrock, H.J., Cohen, J.M., Keil, P., Tatem, A.J., Le Menach, A., Ntshalintshali, N.E., Hsiang,
M.S., Gosling, R.D., 2014. Fine-scale malaria risk mapping from routine aggregated
case data. Malar. J. 13 (1), 1.

Tigani, J., Naidu, S., 2014. Google BigQuery Analytics. John Wiley & Sons.
Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes, J., 2015. Large-

scale cluster management at Google with Borg. Proc. EuroSys 10, 18. ACM.
Whitman, R.T., Park, M.B., Ambrose, S.M., Hoel, E.G., 2014. Spatial indexing and analytics

on hadoop. Proc. 22 ACM SIGSPATIAL. pp. 73–82.
Woodcock, C.E., Allen, A.A., Anderson, M., Belward, A.S., Bindschadler, R., Cohen, W.B., et

al., 2008. Free access to Landsat imagery. Science 320, 1011.
Yu, J., Wu, J., Sarwat, M., 2015. Geospark: a cluster computing framework for processing

large-scale spatial data. Proc. 23 SIGSPATIAL International Conference on Advances
in Geographic Information Systems (p. 70). ACM.

Zhang, Q., Li, B., Thau, D., Moore, R., 2015. Building a better urban picture: combining day
and night remote sensing imagery. Remote Sens. 7 (9), 11887–11913.

http://www.openforis.org/tools/collect-earth.html
http://www.openforis.org/tools/collect-earth.html
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0040
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0040
http://www.copernicus.eu/main/data-access
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0050
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0050
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0055
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0055
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf8585
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf8585
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf8585
http://goo.gl/pF6kmz
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0065
http://www.globalforestwatch.org
http://www.globalforestwatch.org
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0075
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0075
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0080
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0080
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0085
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0085
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0090
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0090
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0095
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0095
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0100
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0100
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0105
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0105
http://www.mol.org
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0115
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0115
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0115
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0120
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0120
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0120
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0125
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0125
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0130
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0130
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0135
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0135
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0135
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0140
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0140
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0145
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0150
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0150
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0155
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0155
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0160
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0165
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0165
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0165
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0170
http://refhub.elsevier.com/S0034-4257(17)30290-0/rf0170

	Google Earth Engine: Planetary-�scale geospatial analysis for everyone
	1. Introduction
	2. Platform overview
	3. The data catalog
	4. System architecture
	5. Data distribution models
	5.1. Image tiling
	5.2. Spatial aggregations
	5.3. Streaming collections
	5.4. Caching and common sub-expression elimination

	6. Efficiency, performance, and scaling
	6.1. System throughput performance

	7. Applications
	8. Challenges and future work
	8.1. Scaling challenges
	8.2. Computational model mismatch
	8.3. Client/server programming model
	8.4. Advancing the state of the art

	Acknowledgements
	References


