Online

MOOC: Python in High Performance computing

Speed up Python programs using optimisation and parallelisation techniques

The Python programming language is popular in scientific computing because of the benefits it offers for fast code development. The performance of pure Python programs is often suboptimal, but there are ways to make them faster and more efficient.

Topics

On this course, you’ll find out how to identify performance bottlenecks, perform numerical computations efficiently, and extend Python with compiled code. You’ll learn various ways to optimise and parallelise Python programs, particularly in the context of scientific and high performance computing.

  • Performance challenges of Python programming language
  • Performance analysis of Python programs
  • Efficient numerical calculations with NumPy
  • Using compiled code with Python
  • Interfacing Python to libraries written in other programming languages
  • Parallel programming with Python

For further information and registration please visit FutureLearn: Python in High Performance Computing.